

© 2024 Panuganti Hanumantha Rao, Rajakumar Subramanian and Geetha Soman. This open-access article is distributed

under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Efficient Resource Allocation and Task Scheduling in a Cloud

Computing Environment using Swarm Intelligence

Panuganti Hanumantha Rao, Rajakumar Subramanian and Geetha Soman

Department of Computer Science and Engineering, Dr. M.G.R Educational and Research Institute, Chennai, India

Article history
Received: 06-06-2024
Revised: 06-08-2024

Accepted: 09-08-2024

Corresponding Author:
Panuganti Hanumantha Rao
Department of Computer
Science and Engineering, Dr.
M.G.R Educational and
Research Institute, Chennai,

India
Email: hanumanthraovbit@gmail.com

Abstract: The new age of network-based computing, known as "cloud

computing," is characterized by the distribution and sharing of resources over

a network. These resources are available to anyone through the Internet on a

pay-per-use basis. Any service that anybody uses can generate massive

amounts of data. Therefore, in this scenario, there will be a significant cost

associated with transferring data between two dependent resources.

Furthermore, if not planned optimally, the overall cost of executing a

complicated program could rise due to the application's high number of tasks.

An effective allocation method is required to satisfy the ever-increasing

demands for resources. Cloud computing has been the focus of extensive

research. Present methods aim aiming dynamic resource allocation but are not

cost-effective. In light of these issues, this article proposes a heuristic

scheduling technique “Enhanced Cat Swarm Optimization” ECSO method to

distribute application tasks among available resources, based on Cat Swarm

Optimisation (CSO). The foraging nature of cats has served as inspiration for

several resource allocations, one of which is Cat Swarm Optimisation (CSO).

The proposed novel approach ECSO offers a modification to CSO that adds a

crossover mechanism (Uniform crossover) to minimize the total execution

cost. To find the optimal solution, the proposed ECSO method takes into

account the cost of data transmission between dependent resources as well as

the cost of job execution on different resources. The ECSO method is tested

with a made-up workflow and evaluates how well it performs in comparison

to the state-of-the-art CSO, PSO, and BCO algorithms for scheduling tasks.

The experimental findings demonstrate that the proposed ECSO provides a

total cost-minimizing task to resources. The ECSO outperformed existing

CSOs, PSOs, and BCOs concerning total execution time of 8% lower and

execution cost of 4% less. It also guarantees that the available resources are

fairly distributed.

Keywords: Cloud Computing, Resource Allocation, Swarm Optimization,

Uniform Crossover, Total Execution Cost

Introduction

The latest computing technology, cloud computing,

offers secure, pay-per-use environments. According to

Rajkumar et al. (2009), cloud computing saves

organizations money by using virtual resources instead of

physical servers and equipment. Cloud computing

transforms into a more effective system for computing

resources through the provision of multilevel abstraction

and a succession of virtualization layers. Users can

expand or decrease the amount of services available

through the elastic scale-up and scale-down properties of

cloud services. The fundamental concept is to store

information, assets, and services in an abstract form on the

Internet. The resources, both software and hardware, are

available to users upon demand based on their present

needs, whereas the supplier organizations distribute them

based on their current availability.
Many sectors of society, including governance, business,

and the economy, have been impacted by cloud computing

in recent years. As a form of parallel and distributed

computing, "the cloud" refers to a network of interconnected

remote servers that can store and process data centrally and

provide users with online access to various IT services and

resources (Pragati et al., 2017). One way to lower software

expenses is by using cloud computing, where the customer

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1682

leases resources instead of buying them (Sreeram et al.,

2021). Cloud computing also offers on-demand services;

which customers can access from anywhere. By leveraging

the resources of remote computers, cloud computing
eliminates the need to store and retrieve data from a single

location (Kesavaraja and Shenbagavalli, 2018). Clients rely

on cloud services instead of maintaining their infrastructure,

which frees consumers from having to understand the

internal operations of the network (Zeebaree et al., 2020).

Software as a Service (SaaS), Infrastructure as a Service

(IaaS), and Platform as a Service (PaaS) are the three ways

in which virtualized computer resources can be provided to

clients (Salah Farrag et al., 2015).

The services are illustrated in Fig. (1). Infrastructure as a

Service (IaaS) is in the role of providing virtualized compute

resources, such as memory, CPU, servers, storage, and more,

as a service. Some instances of infrastructure as a service are

AWS, Google Cloud platform, Apple iCloud, Google Drive,

and Google Compute Engine (Meduri et al., 2023). Platform

as a Service (PaaS) offers services such as operating systems

and software development frameworks. One example of a

PaaS platform is Google App Engine, which allows

programmers to build, test, run, and manage apps

(Ahmed and Wafaa, 2017). Software as a Service (SaaS)

eliminates the need for customers to download, install, and

execute applications on their computers; instead, the user

simply accesses the application's interface. Google Apps,

Cisco WebEx, and Salesforce are some instances of software

as a service (Naji et al., 2020). When it comes to the demand

forecast schedule, the Application Service Providers check

in on the rental services at regular intervals, decide how to

best allocate goals and resources, and save money by not

paying for unnecessary calculations, storage, or data

transfers (Zebari et al., 2020). Also, instead of demanding

complicated bids, resource distribution should be

proportional to decentralization (Sadeeq et al., 2018). This is

because providers, reliant on their resources, may add further

complexity by providing services of different kinds or a

combination of different types. Multiple customers can

compete for similar resources because suppliers require

submissions from suppliers, consumers submit to customers,

and relevant resources are accessible from various sources

(Mostafa et al., 2020). When most individuals think about

cloud computing, they probably envision issues with data

security, power, service availability, managing memory

expansion, and job planning.

Cloud computing research, on the other hand, tends

to center on planning tasks. To make the most of

everything that the cloud has to offer, many tasks

require lightning-fast processing speeds, minimal

latency, and ample resources. The various roles played

by the allocation plan make it imperative that tasks be

assigned appropriately.

Fig. 1: Services of cloud

There are two primary objectives for the cloud

database provider: (1) Satisfying the client's SLAs and (2)

Increasing their profit margin. The service provider's

ability to accomplish these objectives is dependent on

their resource management skills. In order to keep up with

competing requests, the service provider needs to wisely

distribute scarce resources like CPU and memory. Some

additional resources, however, do not have a hard cap but

do come with a price. As an example, consider database
replication. When you expand your database's replicas,

you'll incur costs for both the initial setup (like adding

more nodes) and ongoing operations (like

synchronization). In addition, companies are using a

variety of resources to enhance their services further, with

the hope that more clients will subscribe to cloud

computing (Zaki and Saad, 2018). Therefore, SLA and

resource allocation (Saleh et al., 2018), which indicate the

amount of customer contentment, are among the most

critical elements that impact service quality.

This study concentrates on scheduling algorithms to
check for availability and allocate resources accordingly.

There will always be a need for an improved resource

scheduling algorithm due to the modern trend of ever-

increasing resource demands. Heuristic swarm

optimization has been the most widely used algorithm for

solving the aforementioned problem, and it initially

produced outstanding results. The key contribution of this

article is to address resource constraints in the cloud.

Many researchers suggest scheduling user tasks using the

advanced cat optimization algorithm.

Related Work

A significant amount of resources is needed by the data

center "cloud providers" are independent third parties that

oversee and manage the supply of computing resources,

such as hardware, software, and platforms, to users on

demand. Adapting your strategy for resource allocation to

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1683

meet the varying demands of your clients can be quite a

challenge. As a result, many researchers have investigated

cloud resource allocation through the use of different

scheduling algorithms, resource allocation strategies, RAS,
and VM allocation methods. With the hope of enhancing

network performance by making use of cloud resources.

Virtualization was suggested by Tenepalli and Appini

(2014) as a means to offer active cloud resource

allocation. By moving Virtual Machines (VMs) from a

busy server (the "hot spot") to an idle one (the "cold

spot"), the offered method allows for the efficient

distribution of numerous virtual resources. They

calculated server resource utilization using the

"skewness" approach, which allows them to anticipate

future resource needs by looking at usage logs of
previously used resources. By combining green

computing with dynamic resource allocation, this method

can conserve server energy by reducing wasteful server

consumption and optimizing burdens to meet virtual

machine needs regarding server capacity.

Methods for allocating central processing units and

network resources in shared hosting environments are

presented by Urgaonkar et al. (2002). A linear system

under control and offline parameter identification were

the underlying assumptions of most of the earlier

investigations (Gandhi et al., 2002). For different types of

requests, Lu et al. dynamically change the cache size

(Ying et al., 2004). The DBMIN technique, developed by

Hong-Tai and David (1998). is used to control the amount

of data stored in a relational database's buffer pool (Chou

and David). It makes sense to undertake dynamic power

allocation if we think of power as just another resource in

the system. Energy and server resource management in

data centers is crucial, according to Jeffrey et al. (2001).

In addition, regulates power consumption and

application-level performance (Xu et al., 2010). To

improve the workflow's execution time, Gurmeet Singh

and others suggest a task grouping approach. Reducing

some of the time spent waiting in queue is how it's done

(Singh et al., 2008). Another approach to dynamically

scheduling several workflows is a planner-guided

strategy. With the suggested method, performance

improves with increasing numbers of concurrent

workflows by dynamically scheduling each task in each

workflow (Navjot et al., 2011). The inflexibility of above

above-discussed scheduled algorithms and the effort

required to arrange and develop a timeline are two major

pitfalls. In contrast to heuristic approaches, which focus

on a single answer, genetic algorithms consider a

population of options while making decisions, making

them ideal for production scheduling challenges. To

optimize Quality of Service (QoS), deadline, and budget,

a straightforward Genetic Algorithm (GA) is suggested.

This method discovers the ideal solution in polynomial

time. To discover the best solution, this algorithm uses

a heterogeneous and reservation-based service-

oriented setup (Yu and Buyya, 2006).
Many studies have investigated the possibility of using

swarm intelligence to allocate cloud computing resources.

Particle Swarm Optimisation (PSO) (Sreeram et al., 2021)

is the most studied and long-standing swarm algorithm; it
takes its cues from the way fish and birds forage. Artificial

life and swarming theory are identified as the two

theoretical foundations around which PSO was built.

The Ant Colony Optimisation Algorithm (Warneke and

Kao, 2011) is another algorithm that takes inspiration

from ant behavior, specifically their biological foraging

strategy of leaving pheromones behind to guide future ant

colonies. Cloud load balancing using Ant Colony

Optimisation (ACO) was suggested by Basha et al. (2017)

as an elastic and dynamic approach. In the bio-enthused

technique, which was suggested, the artificial algorithm is

trained to mimic the behavior of biological ants by adding

and removing certain characteristics. Ants utilize trail

pheromones to mark the journey from food sources to

their nests while they look for food. Ants locate

pheromone trails when they forage, and they adhere to the

ones that have the greatest concentration of pheromone

deposits (the shortest path).

Optimization of Bee Colonies (BCO) (Son et al.,

2013) is another methodology taken into consideration.

An artificial colony of bees has also been defined using an

algorithm as a multi-agent system. Research into the

reasoning behind honeybees' nectar harvesting technique

formed the basis of this theory. The different NPC

challenges are effectively addressed by a Bee Colony

Optimization (BCO) method that is suggested for simple

application task/job scheduling. To decrease the time, it

takes to complete a work or task, this method strives for a

fair distribution of the load across the dispersed resources.

According to the experimental findings of this suggested

strategy, BCO outperforms GA in terms of the time it

takes to complete tasks (Bitam, 2012).
An activity-based scheduling technique is suggested

for tasks that take into consideration a collection of

resources that are going to be used (Qi et al., 2009).

Workload distribution and job scheduling are addressed

using a Multiple Ant Colony Optimization algorithm

(MACO). The basic premise is that ant colonies can

discover the optimal value in the search space on a global

scale by exchanging information about their best values.
Cooperation between them allows for the faster resolution

of an issue with many objectives. Performance is higher

compared to FCFS and ACS methods in the experiments

(Liang et al., 2010).

The scientific process scheduling in the cloud can be

improved with the help of a particle swarm optimization

technique. The goal of the author is to ensure that all

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1684

resources are evenly distributed and that the overall cost of

workflow calculation is minimized. The basic idea is that a

group of particles (the population in PSO) will begin to seek

the solution space, and as they do so, they will be influenced
by each other to find the optimal position. Particle velocities

and states are optimized at the local level in each iteration to

reach the global optimal point. In comparison to the state-of-

the-art Best Resources Selection (BRS) algorithm, this

algorithm demonstrates superior performance. A discrete

PSO is an improved version of the basic PSO that achieves

better results concerning the makespan and cost optimization

ratio (Wu et al., 2010). When compared to PSO, GA, ACO,

BCO, etc. all fall short in terms of makespan. This is because

PSO converges among swarm algorithms at a good pace and

reaches the local optima at a far faster rate than evolutionary
algorithms. When the application size is huge, iteratively

obtaining the optimal answers becomes more of a hassle with

PSO and all other methods.

The authors propose using CSO to schedule workflow

tasks as a solution. While CSO is quite similar to basic PSO,

it differs in a few key ways that make it superior. People who

are CSOs can switch between two states: Seeking and

tracing. When cats are in searching mode, they do not move

at all. Only the next best position is their goal. However,

when in tracking mode, they swiftly go to the next optimal

place. In other words, not every cat is hopping around in

solution space simultaneously. They can discover the
optimal next position with relative ease due to the searching

mode, which decreases the number of repetitions necessary

to get a solution (Chu and Tsai, 2007).

Pei-Wei et al. (2008) created the Parallel Cat Swarm

Optimisation (PCSO) Algorithm after the standard CSO was

introduced; it enhanced the convergence speed of CSO for

tiny population sizes. Binary optimization of CSO (BCSO),
first proposed by Sharafi et al. (2013), was applied to various

benchmark optimization tasks and the zero-one knapsack

issue. It was determined that this method outperformed

competing binary optimization techniques. To improve the

algorithm's searching mode step, an alternate method is to

employ different chaotic maps. The best options were

logistic and sinusoidal maps. Sharafi et al. (2013) came up

with this and termed it the Chaotic Cat Swarm Algorithm

(CCSA). Beyond that, the Harmonious-CSO (HCSO) was

introduced by Kuan et al. (2014). This approach modified the

searching mode formula by including the idea of the
Hirschberg-Sinclair algorithm. The algorithm's performance

was verified using a Support Vector Machine (SVM), which

outperformed CSO in the experimental findings. Wang

(2015) significantly improved CSO by dynamically

modifying the parameter Mixture Ratio (MR).

The incorporation of crossover approaches is one way

that swarm optimization algorithms have been enhanced to

produce better outcomes. The enhanced technique was

suggested by Sharma et al. (2018) who enhanced the Particle

Swarm Optimisation Algorithm by adding a crossover

operator. A comprehensive overview of the several genetic

algorithm crossover operators was given by Padmavathi and
Priyanka (2017).

The summary of the survey carried out is presented in the
below Table (1).

Table 1: Analysis of existing literature

Ref Author Approach Strength Weakness Scope in Proposed

Method

Urgaonkar et al.,

2002

Urgaonkar et al. This experiment

assumed a linear

system under

control and offline

parameter

identification

Depends on

topological

changes

Difficult to

identify offline

parameters

Task sequencing

Sharma et al., 2018 Sharma et al. Enhanced

particle swarm

optimization

(PSO)

Incorporated

crossover

operator to

particle

swarm

optimisation

algorithm

Genetic

algorithm

Crossover operator

to decide the optimal

solution

Jeffrey et al., 2001 Jeffrey et al. Dynamic power

allocation

Energy

efficiency

Virtual machine

allocation is not

done according to

the requirement

Dynamically

allocating the

resources

Basha et al., 2017 Basha et al. Ant Colony

Optimisation

(ACO)

Elastic and

dynamic

approach

Not optimal Chose shortest path

Son et al., 2013 Son et al. Optimization of
Bee Colonies

(BCO)

Nectar
harvesting

technique

Exceeds
deadlines in

some cases

Strives for a fair
distribution of the

load across the

dispersed resources

Pei-Wei et al., 2008 Pei-Wei et al. Parallel Cat Swarm

Optimisation

(PCSO) algorithm

Enhanced the

convergence

speed of CSO

for tiny

population

sizes

More

execution

time

Extension to the Cat

Swarm

Optimisation

(CSO)

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1685

This study aims to create a system for dynamically

allocating resources and scheduling tasks using cat swarm

optimization. To maximize throughput while minimizing

predicted total make span through optimum scheduling
using cat swarm intelligence.

Background

In 1995, PSO was initially presented by Kennedy and

Eberhart (1995). For non-linear function optimization, they

offer PSO, a population-based stochastic optimization

heuristic algorithm. Several social models were simulated to

produce it. A swarm is an association of many particles.

While PSO is comparable to the Genetic Algorithm (GA), it

differs in a few key respects, such as the absence of mutation
and crossover operators. PSO's low convergence rate and

ability to swiftly achieve local optimal solutions have made

it a popular choice for optimization problems in several

domains. A worldwide optimal solution can thus be found in

less time (Gil et al., 2007).

One optimization strategy that uses PSO, a soft

computing methodology, is to improve its local candidate

solutions about the fitness function in each iteration until

it finds the global best solution. Every one of the particles

that make up the PSO population has its unique speed and

location in the solution space/search space. To discover the
best possible solution in the search space, the social behavior

of the particles affects their relative positions and velocities.

On the other hand, chu and Tsai's Cat Swarm
Optimisation (CSO) technique is more efficient in
computing terms (Sharma et al., 2018). A sort of swarm

intelligence optimization algorithm, it takes its cues from
the way cats hunt for food, as the name implies. The
majority of cats are in seeking mode, where they look for
the best nearby prey, while the minority are in tracing
mode, where they follow their prey. After the seeking
mode ends, the normal CSO algorithm disregards other
cats and immediately selects potential prey for tracing.
The present second-best cat, however, has the potential to
surpass all others and become the best in the future.
Consequently, this study introduces Assorted Cat Swarm
Optimisation (ACSO), a variant of CSO that integrates the
aforementioned improvements. A new heuristic algorithm

for optimization called "cat swarm optimization" takes its
cues from the cooperative nature of feline social networks.
The idea of CSO was born out of studying two feline
behaviours: Seeking and tracing. So, seeking mode and
tracing mode are the two components of CSO. The trials
and results demonstrate that CSO outperforms PSO with
a weighting factor in terms of performance and results.
However, in general, PSO with a weighting factor exhibits
greater performance than plain PSO. The authors centered
their attention on PSO and CSO to minimize total cost and
improve performance. Both PSO and CSO were used to
obtain the minimal cost as an optimized mapping

technique, but CSO was found to achieve the outcome in
the fewest iterations, which was the authors' goal.

Further, in this article, Cat swarm optimization is

extended with crossover operators to select the best optimal

solution for resource allocation and task scheduling. This

article presents Enhanced Cat Swarm Optimization ECSO, a
novel approach based on cat swarm intelligence and the

adoption of crossover operators for choosing the best optimal

solution for task and resource scheduling.

This study's primary goals are as follows: (A) To offer

an ECSO workflow scheduling that provides an optimal

scheduling method. (B) While scheduling workflows, the

suggested algorithm is contrasted with existing CSO,

PSO, and BCO algorithms. (C) The analysis of resource

load balancing is performed.

Motivation

The significance of cloud computing is growing at an
exponential rate, making it evident that it is the most

recent and greatest technology. Cloud computing has
been, or is rapidly becoming, an integral part of any
company's operations.

Given the heavy usage, keeping the computation as
rapid and effective as possible is of the utmost
importance. To do this, one must determine the optimal
order in which to distribute the jobs to the available virtual
machines. Although numerous swarm intelligence
algorithms can handle this, they fail to take into account a
significant factor. In several cases, the solution or order
task allocation to Virtual Machines (VMs) that seems to
be the worst option at the moment ends up being the best
option. However, the swarm intelligence algorithm only
took the best ones into account for further processing.
This led researchers to conclude that a better final solution
can be achieved by combining the best and second-best
options. As one of the latest and most effective swarm
intelligence algorithms, this method was considered and
integrated into CSO to establish a sequence for allocating
cloud computing resources.

Biological Basis

The instincts of cats to seek out and gather prey are the

inspiration for CSO. At its core, CSO is based on cat swarm

intelligence, which describes how swarms of cats

communicate with one another and their surroundings.
During their foraging activities, cats are seen either actively

seeking out prey or tracking its scent. While working on the

CSO algorithm, Chu and Tsai came up with these phrases.

Chu and Tsai presented Cat Swarm Optimisation (CSO), a

novel swarm-based adaptive method, in 2007. The social

behavior of cats serves as an inspiration for it.
There are two distinct behavioural states that cats can

go into (1) Seeking and (2) Tracing.

Seeking mode: Although cats spend much of their time
lounging around, they are quite alert and are always

looking for food. We call this "seeking mode." They don't
have speed, only state, because they simply remain in one

place and sense the best course of action.

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1686

Tracing mode: As soon as it spots its prey, the cat goes

into tracking mode to get after it. In tracing mode, cats

behave similarly to hunters by swiftly repositioning

themselves to be in the best possible position.

Materials and Methods

It is always a vital and challenging effort to represent

and schedule all the processes in a data-intensive

application workflow. As previously mentioned, the data

generated by these intensive applications is quite vast.

Consequently, processing and transferring this data across

jobs will incur a substantial cost. As a result, the authors

have narrowed in on these hefty expenses and are working

to reduce them while simultaneously improving

performance compared to the current CSO in terms of

iterations. Figure (2) shows a sample workflow that was

taken for experiments. It consists of 9 jobs that need to be

scheduled onto these 4 resources. It is assumed that the

magnitude of the data flow between Ti and Tj, represented

by 𝑑𝑖, 𝑗, remains constant for all activities.

The authors of this study provide a customized

algorithm that, using the CSO concept as its foundation,

seeks to minimize the overall cost of task execution in a

cloud environment by allocating resources efficiently. An

initial population of N cats is used by the proposed

method; while some of these cats are actively searching,

others are more focused on tracing their prey, according

to MR. Depending on the mode a cat is in, a task-resource

mapping may be updated. By evaluating the cats' fitness

level, determine the least expensive mapping can be

determined. Every time around, a new set of cats are

picked to use as our trading partners. As a result of

maximizing efficiency, the optimal solution represented

by the best cat position provides the lowest-cost mapping

possible. The present second-best cat may eventually

surpass and become the best of its kind, as stated

aforementioned. As a result, the suggested method is an

adaptation of CSO that finally gives due consideration to

the second-best cat. Seeking and tracing are the two main

models that contain the whole algorithm. Additionally,

the standard CSO incorporates the suggested

adjustment of several crossovers. The entire process is

depicted in Fig. (3).

Fig. 2: Sample workflow

Fig. 3: Proposed method process flow initial steps

The proposed method ECSO can be explained as:

1. Allocate the VMs to the tasks that are waiting

randomly

2. Divide the tasks into waiting and executing classes

3. Calculate the cost of VMs for present allocation. This

will be the first best optimal allocation

4. Calculate the cost of VMs for task allocation which

are in waiting. This could be the second-best optimal

allocation

5. Then apply a uniform crossover operator on the first

and second best solutions to get the final best
solution

6. Accordingly, apply the best solution for the

allocation of tasks to the VMs

Initial Steps

The whole process is performed on a single data center

with numerous hosts, each with multiple Virtual

Machines (VMs) (i.e. 4 in our example). One

representation of an m-dimensional solution is a cat. For

a cat, each dimension reflects its coordinate value. In
cloud computing, the cat represents a solution vector with

a length equal to the number of jobs (i.e., 10 in our

example). The vector indexes indicate tasks, with the

value at each index indicating the VM allocated to that

job. Tasks are completed on the assigned VM. If two jobs

share the same VM, they are executed sequentially. The

lower-indexed job is given the Virtual Machine (VM) first

because it is considered to have arrived earlier. Taking

into account the burst time of each task in this sequence

allows us to estimate the entire execution time.

Initially, the quantity of cats is manually set. A
manually chosen value is used to begin the process of

determining the total number of cats. In other words, it

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1687

serves as a representation of the solution size space, which

is the number of possible solutions. By the nature of cats

that was stated earlier, the solution space has been

partitioned into two subgroups, with one subgroup
undergoing the searching mode and the other subgroup

executing the tracing mode for that specific iteration. This

divide is carried out at the start of each iteration to ensure

that every prospective solution has the opportunity to

participate in both modes randomly. To make this

difference, a variable known as the “Mixture Ratio (MR)”

is utilized. The number of cats (solutions) in the tracing

mode divided by the number of cats in the seeking mode

is the definition of this variable. A smaller number of cats

are in tracing mode, which represents how a single cat

would likely spend most of its time hunting. To reduce the
number of cats in this mode, MR is usually given a

moderate value between 0 and 1.

Fitness Function

It is possible to determine the fitness value of any

possible solution, as well as any temporary solutions

generated during implementation, by using the fitness

function. The extent to which the solution fits our

situation is indicated by it. With each iteration, we have

minimized the maximum fitness value using a
minimization strategy.

The fitness value in the suggested algorithm is the total

of the execution and transfer costs. The virtual machine's

execution cost, 𝐸𝐶𝑖, is calculated as follows:

𝐸𝐶𝑖 = 𝑇𝑎𝑠𝑘𝐷𝑎𝑡𝑎𝑈𝑛𝑖𝑡𝑠𝐸𝑥𝑒𝑐𝑖 × 𝑉𝑚𝐷𝑎𝑡𝑎𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖 (1)

where, 𝑉𝑚𝐷𝑎𝑡𝑎𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖 stands for the execution cost

per unit of data and 𝑇𝑎𝑠𝑘𝐷𝑎𝑡𝑎𝑈𝑛𝑖𝑡𝑠𝐸𝑥𝑒𝑐𝑖 is the total

number of data units required by the task to be done on V mi.

Vmi's transfer cost, 𝑇𝑖, can be expressed as:

𝑇𝐹𝑖 = ∑ (𝐷𝑇𝑖𝑗 × 𝑉𝑚𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗)𝑖𝑗 (2)

where, j represents each possible 𝑉𝑚 to which data can be

sent from 𝑉 𝑚𝑖 𝑡𝑜 𝑉 𝑚𝑗.
And, DTij represents the data units transferred from

𝑉𝑀𝑖 𝑡𝑜 𝑉𝑀𝑗.

𝑉𝑚𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 represents 𝑉𝑚’𝑠 transmission cost

from 𝑉𝑀𝑖 𝑡𝑜 𝑉𝑀𝑗.
The total cost, 𝐶𝑜𝑠𝑡𝑖, is the sum of execution 𝐸𝐶𝑖 and

transfer costs 𝑇𝐹𝑖:

𝐶𝑜𝑠𝑡𝑖 = 𝐸𝐶𝑖 + 𝑇𝐹𝑖 (3)

This suggested approach ECSO incorporates the

existing second-best solution to minimise the total cost

that was described above. Using the minimization

technique, the fitness value is calculated here based on the

expenditures incurred. Results for fitness evaluations will

be more conservative when expenses are reduced.

Assigning jobs to different Virtual Machines (VMs) on

the hosts in the cloud using this technique will result in

extremely low costs, according to the final solution

calculated after several iterations.

Different cloud service providers offer different pricing

strategies that can be used to estimate the cost of their

services in advance. Consider Amazon and Gogrid, both of

which have distinct pricing structures for various customer

segments. The Amazon Web Services (AWS) cost calculator

allows users in Amazon to evaluate their total service costs.

Seeking Mode

Most cats search the globe while resting using elegant
position updates. The method employs two fundamental
factors: CDC and SMP. SMP (seeking memory pool)
indicates the number of copies per cat. CDC (count of
dimension to change) determines the number of

assignments to be modified in a single copy. This state is
also known as the resting state. There is an initial period
of inactivity for the cat in this state. It performs little more
than examine its environment for threats and possible
prey. Similarly, to get closer to the ultimate solution, the
current seeking-mode possible solutions in the solution
space are changed to locate the ideal next potential
solution. Making a copy of the cat's current position (i.e.,
the configuration of virtual machine allocation to the tasks
indicated by the indices of this possible solution) and
slightly modifying each copy to check neighboring
locations allows us to make this option. It is necessary to

initialize the following parameters:

 Seeking memory pool: The Seeking Memory Pool

(SMP) is the set of all possible solutions multiplied
by the number of copies made before choosing the

best one. It specifies the maximum allowable

dimensional positional change for each cat while

copying and is called the

 Seeking Range of the chosen Dimension (SRD):

Specifically, the margin of error that can be used to

adjust the index of the Virtual Machine (VM)

assigned to each job to generate a new solution

 Counts of Dimension to Change CDC: Every solution

dimension remains unchanged in every iteration,

according to the CDC (Counts of Dimension to

Change) method. The assigned Virtual Machine
(VM) for each job remains unchanged. Therefore,

the number of changed dimensions is specified by

the CDC

 Self-Positioning Consideration (SPC): The present

virtual machine job allocation might be taken into

account more or less. The value of the boolean

variable SPC dictates this choice

Procedure-ESCO-Seeking Mode

Step 1: Produce j identical copies of the i-th cat using
SMP:

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1688

𝑗 = [
𝑆𝑀𝑃 – 1 ; 𝑆𝑃𝐶 = 1

𝑆𝑀𝑃 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
[(4)

Step 2: Randomly change the copy CDC dimensions:

𝑌 = (1 ± 𝑆𝑅𝐷 × 𝐾) × 𝑋 (5)

X denotes the current position, Y indicates the next

position, and K is a randomly produced value between 0

and 1, in this case.
Step 3: Assess each copy's fitness.

Step 4: Select the most cost-effective solution from

all copies.

The probability of 𝑐𝑎𝑡𝑖 is determined by:

𝑃𝑅𝑖 =
𝐹𝑇𝑖 − 𝐹𝑇𝑚𝑎𝑥

𝐹𝑇𝑚𝑎𝑥 − 𝐹𝑇𝑚𝑖𝑛
 (6)

Throughout this context, 𝑃𝑅𝑖 denotes the

𝑐𝑎𝑡𝑖 probability, 𝐹𝑇𝑖 denotes the 𝑐𝑎𝑡𝑖 fitness value,

𝐹𝑇𝑚𝑎𝑥 denotes the upper bound of the fitness function,

and 𝐹𝑇𝑚𝑖𝑛 describes the lower bound.
If each cat's fitness score is exactly 1, then the

preceding selection probability is 1.
Step 5: Pick a solution at random and swap it out for

the i-th cat.

Uniform Crossover

The former cat swarm optimization algorithm's

seeking mode culminated with the cats pursuing the cat

allocated to the global best, which served as prey in the

tracing mode. It has been noted, however, that the best

solution is not always the most globalized one. A better

pick may be the second-best cat prospect on occasion.

This becomes a crucial aspect of the CSO algorithm to

be disregarded.

A genetic algorithm's crossover operator was

integrated to embrace the second-best cat position as well,

and the crossovers of the global best and second-best cat

positions were additionally taken into account. Two

crossover operators were tested. Two-point crossover and

uniform crossover are used in this context. The results

were recorded, plotted, and compared. Later, the results

are discussed in the Performance section. We found that

the uniform crossover operator yielded the best results.

So, this algorithm uses it for better outcomes.

The proposed method incorporates a uniform

crossover operator in the CSO algorithm and selects the

optimal solution for task and resource scheduling.

Procedure-ESCO-Uniform Crossover Operator

The new algorithm's implementation of this section

follows these four simple steps:

Algorithm: ESCO_Uniform Crossover Operator Begin

1. Assign the global best-fitting cat as Parent1 using the
most recent changes to the positions and velocities of

the cats (the solutions and future modifications to the

virtual machine allocation of each job, respectively).

Locate the cat that ranks second in terms of fitness and

designate it as Parent2.

2. Create two solutions, Child1 and Child2, by applying

the Uniform crossover operator to Parent1 and
Parent2.

3. Keep track of Child1's and Child2's fitness values.

4. Pick the best fitness candidate from among Parent1,

Parent2, Child1, and Child2 for global best cat and

update its value.

5. End

The second-best possible sequence for virtual

machines' work allocation is also taken into consideration

here. By selecting the best option from the set consisting

of the best, second best, and their generated descendants,

the best possible option for this configuration is updated.

This global best is now being considered as a possible

solution to be followed at the tracing phase.

Tracing Mode

The cat begins to follow its prey as it spots it. Before

pursuing its prey, it determines its velocity, which

includes both its speed and direction. This triggers an

abrupt transition from a state of sedentary rest to one of

vigorous activity. Cats in this state are energetically

searching the local space by moving toward the next best

position quickly and efficiently. Within the framework of

cloud-computing resource allocation, this comparison

implies that after obtaining the optimal sequence of

Virtual Machines (VMs) to assign to tasks, potential
solutions may, while in tracing mode, determine the

difference between the index of the present VM assigned

to a task and the optimal VM to be assigned to it (i.e.,

compute its velocity) and swap the indexes accordingly.

This is done for all the tasks. This means that the global

best solution is used to update the index of virtual

machines kept at each task of a solution.

Here is a general outline of the steps:

1. The following formula is used to update the velocity.

Present velocity:

𝑣𝑖1 = 𝑤𝑡. 𝑣𝑖 + 𝑝. 𝑐. (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖) (7)

where, c is the acceleration constant, wt is the inertia

weight, and p is a random number such that 0 < = 𝑝 < =
1. The present position is denoted as 𝑋𝑖, the best location

is 𝑋𝑏𝑒𝑠𝑡, and the previous velocity is 𝑣𝑖:

2. Assign the upper bound to the cat's velocity if its
updated velocity is greater than it

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1689

3. Using the current position as input and the revised

velocity, we can update the cat's location using the

following formula:

𝑋𝑖1 = 𝑋𝑖 + 𝑣𝑖1 (8)

where, 𝑋𝑖 is the current position, 𝑋𝑖 1 is the new location

and vi1 is the updated velocity:

4. Determine the cats' fitness level

5. Incorporate the solution set with the present

iteration's best positions

Procedure for Enhanced CSO-ECSO

Procedure-ESCO

Algorithm: ESCO Begin

1. Accept user input for parameters.
2. Create the initial cat population by randomly

allocating location (X) and velocity (V) vectors for

each dimension.

3. Initiate MR/SPC.

4. Repeat steps 5-7 until culmination requirements are

met.

5. Place modes (seeking or tracing) for all cats per

MR.

Evaluate cat fitness and determine the global best.

6. For each cat:

a) If the cat is in seeking mode, execute seeking

mode. Perform various Crossover Optimised
local best selection.

b) For cats in tracing mode, execute tracing mode.

7. End

Simulation Setup

The Cloudsim simulator is used to simulate the

algorithm that is being suggested. By facilitating the

creation of Virtual Machines (VMs) in data centers,

each with its own processing capability, the Cloudsim

toolkit (Yu and Shi, 2008) allows for the modeling of

systems of cloud computing environments. This can be

used to simulate jobs, which are cloudlets, and then

allocate them to different virtual machines. The values that

were initialized for the simulation are shown in Table (2).

Experimental Data

The data produced during simulation is presented in

Tables (3-4). The cost matrix is presented in Table (3). It

represents the execution cost of VMs to the tasks. Table (4)

shows the transfer costs between VMs.

𝐸𝑀[𝑖, 𝑗] = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑇𝑖 𝑜𝑛 𝑃𝐶𝑖 𝑖𝑛 𝑐𝑒𝑛𝑡𝑠

𝑇𝑀[𝑖𝑗 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑃𝐶𝑖 𝑡𝑜 𝑃𝐶𝑗 𝑖𝑛 𝑐𝑒𝑛𝑡𝑠

/𝑀𝐵

Table 2: Simulation configuration

No. of datacenters 1

RAM 2560 MB
Host memory 1000000 MB
Bandwidth 10000
No virtual machines 6
No of hosts 4
SMP 5
SRD 0.8
CDC 5
MR Random Value

SPC Random Value

Table 3: Execution cost computation

 PC1 PC2 PC3 PC4

T1 1.24 1.10 1.12 1.13
T2 1.12 1.10 1.10 1.14
T3 1.23 1.11 1.15 1.16
T4 1.19 1.14 1.22 1.15
T5 1.24 1.15 1.16 1.15
T6 1.14 1.13 1.12 1.14
T7 1.24 1.13 1.16 1.17

T8 1.10 1.12 1.14 1.16
T9 1.23 1.14 1.15 1.18
T10 1.15 1.14 1.26 1.13

Table 4: Transfer cost matrix

 PC1 PC2 PC3 PC4

PC1 0.01 0 0.15 0.19
PC2 0.15 0.15 0 0.20
PC3 0.19 0.19 0.20 0
PC4 0.20 0.01 0.11 0.15

Results and Discussion

Performance Benchmarks

The following benchmarks were used to evaluate and

compare the proposed strategy:

a) Total cost required to schedule all workflow tasks

using available resources. The overall cost

comprises execution costs for all jobs and

transmission costs for data flow between tasks

b) Total number of Iterations till optimal solution space

outcome is achieved

c) Load Distribution over available resources

Results and Analysis

A comparison was made between the traditional Cat

Swarm Optimization algorithm CSO, Particle Swarm

Optimization algorithm PSO, Bee Colony Optimization

Algorithm BCO, and the Enhanced Cat Swarm

Optimization algorithm ECSO, which was put into

practice. To choose the best crossover method,

however, several were tested before the actual ECSO

was put into existence.

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1690

Crossover Comparison

The outcomes of. Comparing uniform crossover, and

two-point crossover, in terms of execution time, and total

cost are as follows.

Execution Time

Figure (4) and Table (5) show that the execution time

grows with the no. of jobs since more jobs need to be

accomplished before the full work can be completed.

When looking at the execution times of several methods,

it is clear that uniform crossover has the lowest compared

to two-point crossover. Uniform crossover exhibits less

execution time of 4% reduction over two-point crossover

for an average of 5 jobs.

Total Cost

The overall cost vs the number of jobs is plotted in

Fig. (5). There is a direct correlation between the

number of jobs and the total cost. A higher number of

tasks necessitates more computing power, which is

exactly why this occurs. Uniform crossover and two-point

crossover have the lowest total execution costs. Table (6)

shows the total cost comparison of various crossovers

concerning no of obs. It is evident from the chart and table

that uniform crossover exhibits lower total cost over an

average of 5 jobs with a 5% reduction when compared to

a two-point crossover.

Fig. 4: Crossover comparison based on execution time

Table 5: Crossover comparison depending on execution time

No of Jobs
CSO with
two-point
crossover

CSO with uniform
crossover(ECSO)

0 760 730

2 980 946
4 1343 1289
6 1567 1436
8 1784 1678
10 1985 1908

Table 6: Crossover comparison depending on execution time

No of Jobs
CSO with Two-point
Crossover

CSO with Uniform
Crossover(ECSO)

0 80086 80002
2 80134 80076
4 92345 91254
6 100042 99068
8 118589 115462
10 123587 118486

Fig. 5: Crossover comparison depending on total cost

Fitness Comparison

Figure (6) shows that fitness values drop as iteration

counts go up. This is the natural consequence of the

reasoning that states a lower fitness value is obtained with

an increasing number of iterations, leading to greater
performance. Once again, when plotting Fitness values

against several iterations, the uniform crossover was

much ahead of the two-point crossover strategy. Table (7)

shows the stats of Fitness values mapping over no of

iterations for uniform and two-point crossovers. Uniform

crossover exhibits a 4% lowering over two-point

crossover for an average number of iterations.

0

500

1000

1500

2000

2500

0 2 4 6 8 10

E
x
ec

u
ti

o
n
 t
im

e

No of jobs

Crossover comparison based on execution time

CSO with Two-point Crossover

CSO with Uniform Crossover(ECSO)

0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10

T
o
ta

l
co

st
:e

x
ec

u
ti

o
n
 c

o
st

 +
 t

ra
n
sf

er
 c

o
st

No. of jobs

Crossover comparison based on total cost

CSO with Two-point Crossover

CSO with Uniform Crossover(ECSO)

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1691

Table 7: Fitness value comparison over Uniform Crossover
and Two-point crossover

No of Jobs
CSO with Two-point
Crossover

CSO with Uniform
Crossover (ECSO)

0 21945 21324

20 18898 18045
40 14756 13985
60 12368 11895
80 9584 8983
100 7568 6756

Fig. 6: Fitness comparison over crossovers

Performance Analysis of Proposed ECSO Methods

After deciding that the uniform crossover was the best

crossover method, it was used in CSO to create the

Enhanced Cat Swarm Optimization proposed method

ECSO. In addition, proposed ECSO, regular-pure CSO,

PSO, and BCO were evaluated in terms of fitness value,

total execution cost, and execution time.

Fitness Value

It was evident that ECSO performed better than pure

CSO, PSO, and BCO when looking at the results of fitness

values versus several iterations as shown in Fig. (7) and

Table (8) which were acquired by running the above-

mentioned algorithms. Because a minimization model

was employed in the proposed ECSO, it is preferred to

have lower fitness values. ECSO produces more

satisfactory fitness values. ECSO shows 8% lower fitness

values when compared with other algorithms.

Total Execution Cost

Figure (8) shows an association between job number

and total execution cost. This graph shows that ECSO has

a lower total cost than pure CSO, PSO, and BCO. ECSO's

uniform crossover operation leads to faster, better

solutions in fewer iterations, reducing costs in subsequent

iterations. In pure CSO and other algorithms, this does not

occur, resulting in low-quality outcomes. Table (9) shows

the total execution costs for the proposed ECSO and other
existing algorithms like pure CSO, PSO, and BCO. The

stats show that ECSO exhibits a lower cost of 12%

whereas pure CSO shows 21%, PSO shows 24%, and

BCO shows a 27% lower cost over an average no of jobs.

Fig. 7: Fitness comparison for ECSO, CSO, PSO, and BCO

algorithms

Fig. 8: Total execution cost for ECSO, CSO, PSO, band CO

algorithms

10000

12000

14000

16000

18000

20000

22000

24000

0 20 40 60 80 100

F
it

n
es

s
v
al

u
es

No. of iterations

Fitness comparision for crossovers

CSO with Two-point Crossover

CSO with Uniform Crossover (ECSO)

10000

12000

14000

16000

18000

20000

22000

24000

0 20 40 60 80 100
F

it
n
es

s
v
al

u
es

No. of iterations

Fitness comparision

Proposed ECSO Pure CSO

PSO BCO

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10

T
o
ta

l
co

st
:e

x
ec

u
ti

o
n
 c

o
st

 +
 t

ra
n
sf

er
 c

o
st

No. of jobs

Total execution cost comparision

Proposed ECSO Pure CSO

PSO BCO

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1692

Table 8: Fitness value comparison for proposed ECSO, CSO,
PSO, and BCO

No of
Jobs

Proposed
ECSO

Pure CSO PSO BCO

0 20354 21445 22945 24455

20 17035 18128 20989 22891

40 12925 14265 16756 18556

60 10955 12248 14824 16242

80 7843 9143 12864 14642

100 5546 7184 9945 11453

Table 9: Total execution cost comparison for proposed ECSO,

CSO, PSO, and BCO

No of
Jobs

Proposed
ECSO

Pure CSO PSO BCO

0 80012 80036 83245 87425

2 86054 86114 88423 92243

4 91224 92315 93245 97452

6 99018 100031 110234 113314

8 115423 118535 128354 135564

10 118434 123537 133637 146672

Table 10: Total execution cost comparison for proposed
ECSO, CSO, PSO, and BCO

No of
Jobs

Proposed
ECSO

Pure CSO PSO BCO

0 520 516 712 978

2 896 882 1034 1156

4 1192 1174 1254 1467

6 1563 1556 1738 1985

8 1772 1764 1992 2134

10 1928 1905 2284 2376

Total Execution Time

As seen in Fig. (9), execution time was plotted versus

job count. ECSO takes equivalent execution times as pure

CSO. ECSO lags in this field a bit. The reasons for this
are legitimate. The addition of a new operator (Uniform

crossover) for each iteration incurs additional

computation time, unlike pure CSO. However, this

additional step led to other improvements and yielded

satisfactory outcomes. Table (10) shows the total

execution time of all the algorithms ECSO, pure CSO,

PSO, and BCO. From the graph and Table (9) it is clear

that the proposed ECSO shows a little bit high execution

time compared to pure CSO and less execution time

compared to PSO and BCO algorithms. ECSO shows

1.2% more execution time whereas pure CSO, PSO,
and BCO show 2.4, 3.8, and 4.6% respectively over an

average no of jobs, due to the incorporation of

crossover operator.

Fig. 9: Total execution time for ECSO, CSO, PSO, and

BCO algorithms

Conclusion and Future Directions

The results of this study reveal that swarm intelligence

algorithms consistently disregard the second-best

sequence for allocating resources. In cases when the final

sequence may have included elements from the second-

best sequence this resulted in additional cycles to get the

same outcome. Because of this, the best-sequence

resource allocation algorithm's execution cost went up
slightly. As a result, researchers looked into crossover

methods. After comparing the two-point and uniform

crossover operators the chosen problem was best

solved by the uniform crossover.

Enhanced cat swarm optimization is a new swarm-

based strategy that is introduced in this study as a

scheduling technique. The convergence speed of this

method is much faster than that of CSO, PSO, and BCO.

The proposed method ECSO achieves the ideal solutions

in significantly fewer iterations by utilizing two modes of

operation: Calculated update of cat positions and reduced

energy wastage in random movement. Therefore, it is
more efficient than pure CSO, PSO, and BCO since it

converges to solutions faster. The next step in this line of

research could be to expand ECSO such that it can

schedule tasks with several goals such as minimizing

execution time and energy consumption. The Enhanced

Cat Swarm Optimisation method (ECSO), a modified

version of the CSO algorithm, was the subsequent

contribution; it included this crossover mechanism. Using

the uniform crossover operator, this method can

successfully consider the second-best option at every

0

500

1000

1500

2000

2500

0 2 4 6 8 10

E
x
ec

u
ti

o
n
 t
im

e

No. of jobs

Total execution time comparision

Proposed ECSO Pure CSO

PSO BCO

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1693

point in time. By doing so, a more effective algorithm is

created and utilized to eliminate the problem of

disregarding the second-best option. To save costs, the

best technique to assign current jobs to the available
virtual machines was provided by the final solution. As a

result, the method for allocating resources in the cloud is

now superior. The results were plotted and analyzed

according to several characteristics such as execution time

execution cost and fitness function. The results showed

that the overall execution cost of the jobs on the accessible

VMs dropped substantially and the fitness values dropped

to good levels in this minimization scenario. However, the

time it took to complete the jobs slightly increased and

that was for reasonable and practical reasons. This study's

foundational finding is that when using ECSO to allocate
resources to conduct the necessary activities on available

VMs there is a cost improvement.

There are several ways in which the current work on

this topic can be expanded. Optimization of the tasks'

response time, waiting time, and throughput should

take precedence over total execution cost and execution

time. Adding a uniform crossing step has recently

reduced the execution time. It is possible to try and

improve upon the same. The pattern of the CSO

population can be better matched by synthesizing a new

crossover technique.

Acknowledgment

The authors acknowledge the support and cooperation

rendered by all the members directly and indirectly.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

Panuganti Hanumantha Rao: Problem notification,
and implementation.

Rajakumar Subramanian: Results and conclusion.

Geetha Soman: Overall edited and proof checking.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Ahmed, O. M., & Wafaa, A. M. (2017). A Review on Recent

Steganography Techniques in Cloud Computing.

Academic Journal of Nawroz University, 6(3), 106–111.

https://doi.org/10.25007/ajnu.v6n3a91

Basha, Shaik. M., & Padmavathi, M. (2017). Dynamic

and Elasticity ACO Load Balancing Algorithm for

Cloud Computing. 2017 International Conference on

Intelligent Computing and Control Systems

(ICICCS), 77–81.

https://doi.org/10.1109/iccons.2017.8250571

Bitam, S. (2012). Bees Life Algorithm for Job Scheduling

in Cloud Computing. Proceedings of the Third

International Conference on Communications and

Information Technology, 186–191.

Chu, S.-C., & Tsai, P.-W. (2007). Computational

Intelligence Based on the Behavior of Cats.

International Journal of Innovative Computing,

Information and Control, 3(1), 163–173.

Gandhi, N., Tilbury, D. M., Diao, Y., Hellerstein, J., &

Parekh, S. (2002). MIMO Control of an Apache Web

Server: Modeling and Controller Design.

Proceedings of the 2002 American Control

Conference (IEEE Cat. No.CH37301), 4922–4927.

https://doi.org/10.1109/acc.2002.1025440

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G.,

Gannon, D., Goble, C., Livny, M., Moreau, L., &

Myers, J. (2007). Examining the challenges of

scientific workflows. Computer, 40(12), 24-32.

https://doi.org/10.1109/MC.2007.421

Hong-Tai, C., & David J., D. (1998). An Evaluation of

Buffer Management Strategies for Relational Database

Systems. Morgan Kaufmann Publishers Inc.

Jeffrey, S. C., Darrell, C. A., Prachi, N. T., Amin, M. V.,

& Ronald, P. D. (2001). Managing Energy and Server

Resources in Hosting Centers. ACM SIGOPS

Operating Systems Review, 35(5), 103–116.

https://doi.org/10.1145/502059.502045

Kennedy, J., & Eberhart, R. (1995). Particle Swarm

Optimization. Proceedings of ICNN’95 - International

Conference on Neural Networks, 1942–1948.

https://doi.org/10.1109/icnn.1995.488968

Kesavaraja, D., & Shenbagavalli, A. (2018). QoE

Enhancement in Cloud Virtual Machine Allocation

Using Eagle Strategy of Hybrid Krill Herd

Optimization. Journal of Parallel and Distributed

Computing, 118, 267–279.

https://doi.org/10.1016/j.jpdc.2017.08.015

Kuan, C. L., Kai, Y. Z., & Jason, C. H. (2014). Feature

Selection of Support Vector Machine Based on

Harmonious Cat Swarm Optimization. 2014 7th

International Conference on Ubi-Media Computing

and Workshops, 205–208.

https://doi.org/10.1109/u-media.2014.38

Liang, B., Yan-Li, H., Song-Yang, L., & Wei-Ming, Z.

(2010). Task Scheduling with Load Balancing Using

Multiple Ant Colonies Optimization in Grid

Computing. 2010 Sixth International Conference on

Natural Computation, 2715–2719.

 https://doi.org/10.1109/icnc.2010.5582599

https://doi.org/10.25007/ajnu.v6n3a91
https://doi.org/10.1109/iccons.2017.8250571
https://no.ch/
https://doi.org/10.1109/acc.2002.1025440
https://doi.org/10.1145/502059.502045
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1016/j.jpdc.2017.08.015
https://doi.org/10.1109/u-media.2014.38
https://doi.org/10.1109/icnc.2010.5582599

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1694

Meduri, R. K. K., Gutha, S., & Jadala, V. C. (2023). An

Architectural Review of Multi-Tenancy in Cloud

Computing. In J. Zhao, V. Kumar, R. Natarajan, & T.

Mahesh (Eds.), Handbook of Research on

Advancements in AI and IoT Convergence

Technologies (pp. 178–196). IGI Global.

https://doi.org/10.4018/978-1-6684-6971-2.ch010

Mostafa, S. A., Gunasekaran, S. S., Mustapha, A.,

Mohammed, M. A., & Abduallah, W. M. (2020).

Modeling an Adjustable Autonomous Multi-Agent

Internet of Things System for Elderly Smart Home.

In H. Ayaz (Ed.), Advances in Neuroergonomics and

Cognitive Engineering. AHFE 2019 (Vol. 953, pp.

301–311). Springer International Publishing.

 https://doi.org/10.1007/978-3-030-20473-0_29

Naji, H., Abdulraheem, J. A., & Lailan, M. H. (2020).

CPU Scheduling Techniques: A Review on Novel

Approaches Strategy and Performance Assessment.

Journal of Applied Science and Technology Trends,

1(1), 48–55.https://doi.org/10.38094/jastt1215

Navjot, K., Taranjit, S. A., & Rajbir, S. C. (2011).

Comparison of Workflow Scheduling Algorithms in

Cloud Computing. International Journal of

Advanced Computer Science and Applications, 2(10).

 https://doi.org/10.14569/ijacsa.2011.021013

Padmavathi, K., & Priyanka, Y. (2017). Crossover Operators

in Genetic Algorithms: A Review. International

Journal of Computer Applications, 162(10), 34–36.

https://doi.org/10.5120/ijca2017913370

Pei-Wei, T., Jeng-Shyang, P., Shyi-Ming, C., Bin-Yih, L.,

& Szu-Ping, H. (2008). Parallel Cat Swarm

Optimization. 2008 International Conference on

Machine Learning and Cybernetics, 3328–3333.

https://doi.org/10.1109/icmlc.2008.4620980

Pragati, P., Rakesh, D. R., Manoj, K. J., & Bhaskar B., G.

(2017). Understanding and Predicting the

Determinants of Cloud Computing Adoption: A Two

Staged Hybrid SEM - Neural Networks Approach.

Computers in Human Behavior, 76, 341–362.

https://doi.org/10.1016/j.chb.2017.07.027

Qi, C., Zhi-Bo, W., & Wen-Mao, G. (2009). An

Optimized Algorithm for Task Scheduling Based on

Activity Based Costing in Cloud Computing. 2009

3rd International Conference on Bioinformatics and

Biomedical Engineering, 1–3.

https://doi.org/10.1109/icbbe.2009.5162336

Rajkumar, B., Chee Shin, Y., Srikumar, V., James, B., &

Ivona, B. (2009). Cloud Computing and Emerging IT

Platforms: Vision, Hype, and Reality for Delivering

Computing as the 5th Utility. Future Generation

Computer Systems, 25(6), 599–616.

https://doi.org/10.1016/j.future.2008.12.001

Sadeeq, M. A. M., Zeebaree, S. R. M., Qashi, R., Ahmed, S.

H., & Jacksi, K. (2018). Internet of Things Security: A

Survey. 2018 International Conference on Advanced

Science and Engineering (ICOASE, 162–166.

https://doi.org/10.1109/ICOASE.2018.8548785

Salah Farrag, A. A., Mahmoud, S. A., & El-Horbaty, E.

S. M. (2015). Intelligent Cloud Algorithms for Load

Balancing Problems: A Survey. 2015 IEEE Seventh

International Conference on Intelligent Computing

and Information Systems (ICICIS), 210–216.

https://doi.org/10.1109/intelcis.2015.7397223

Saleh, A., Abdullah, A., & Mohammad, A. S. (2018).

Impact of Virtualization on Cloud Computing Energy

Consumption: Empirical Study. Proceedings of the

2nd International Symposium on Computer Science

and Intelligent Control, 1–7.

https://doi.org/10.1145/3284557.3284738

Sharafi, Y., Khanesar, M. A., & Teshnehlab, M. (2013).

Discrete Binary Cat Swarm Optimization Algorithm.

2013 3rd IEEE International Conference on

Computer, Control and Communication (IC4), 1–6.

https://doi.org/10.1109/ic4.2013.6653754

Sharma, D. K., Garg, A., & Jha, A. (2018). Assorted Cat

Swarm Optimisation for Efficient Resource

Allocation in Cloud Computing. 2018 Fourteenth

International Conference on Information Processing

(ICINPRO), 1–6.

https://doi.org/10.1109/icinpro43533.2018.9096807

Singh, G., Su, M.-H., Vahi, K., Deelman, E., Berriman,

B., Good, J., Katz, D. S., & Mehta, G. (2008).

Workflow Task Clustering for Best Effort Systems

with Pegasus. Proceedings of the 15th ACM Mardi

Gras Conference: From Lightweight Mash-Ups to

Lambda Grids: Understanding the Spectrum of

Distributed Computing Requirements, Applications,

Tools, Infrastructures, Interoperability and the

Incremental Adoption of Key Capabilities, 1–8.

https://doi.org/10.1145/1341811.1341822

Son, S., Jung, G., & Jun, S. C. (2013). An SLA-Based

Cloud Computing that Facilitates Resource

Allocation in the Distributed Data Centers of a Cloud

Provider. The Journal of Supercomputing, 64(2), 606–

637.https://doi.org/10.1007/s11227-012-0861-z

Sreeram, G., Pradeep, S., Rao, K. S., Raju, B. D., &

Nikhat, P. (2021). Moving Ridge Neuronal

Espionage Network Simulation for Reticulum

Invasion Sensing. International Journal of Pervasive

Computing and Communications, 17(1), 64–77.

 https://doi.org/10.1108/ijpcc-05-2020-0036

Tenepalli, D., & Appini, N. R. (2014). Active Resource

Provision in Cloud Computing through Virtualization.

2014 IEEE International Conference on Computational

Intelligence and Computing Research, 1–4.

https://doi.org/10.1109/iccic.2014.7238373

https://doi.org/10.4018/978-1-6684-6971-2.ch010
https://doi.org/10.1007/978-3-030-20473-0_29
https://doi.org/10.38094/jastt1215
https://doi.org/10.14569/ijacsa.2011.021013
https://doi.org/10.5120/ijca2017913370
https://doi.org/10.1109/icmlc.2008.4620980
https://doi.org/10.1016/j.chb.2017.07.027
https://doi.org/10.1109/icbbe.2009.5162336
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1109/ICOASE.2018.8548785
https://doi.org/10.1109/intelcis.2015.7397223
https://doi.org/10.1145/3284557.3284738
https://doi.org/10.1109/ic4.2013.6653754
https://doi.org/10.1109/icinpro43533.2018.9096807
https://doi.org/10.1145/1341811.1341822
https://doi.org/10.1007/s11227-012-0861-z
https://doi.org/10.1108/ijpcc-05-2020-0036
https://doi.org/10.1109/iccic.2014.7238373

Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695

DOI: 10.3844/jcssp.2024.1681.1695

1695

Urgaonkar, B., Shenoy, P., & Roscoe, T. (2002).

Resource Overbooking and Application Profiling in

Shared Hosting Platforms. ACM SIGOPS Operating

Systems Review, 36(SI), 239–254.

https://doi.org/10.1145/844128.844151

Wang, J. (2015). A New Cat Swarm Optimization with

Adaptive Parameter Control. In H. Sun, C.-Y. Yang,

C.-W. Lin, J.-S. Pan, V. Snasel, & A. Abraham

(Eds.), Genetic and Evolutionary Computing (Vol.

329, pp. 69–78). Springer International Publishing.

https://doi.org/10.1007/978-3-319-12286-1_8

Warneke, D., & Kao, O. (2011). Exploiting Dynamic

Resource Allocation for Efficient Parallel Data

Processing in the Cloud. IEEE Transactions on

Parallel and Distributed Systems, 22(6), 985–997.

 https://doi.org/10.1109/tpds.2011.65

Wu, Z., Ni, Z., Gu, L., & Liu, X. (2010). A Revised

Discrete Particle Swarm Optimization for Cloud

Workflow Scheduling. 2010 International

Conference on Computational Intelligence and

Security, 184–188.

 https://doi.org/10.1109/cis.2010.46

Xu, Z., Tu, Y.-C., & Wang, X. (2010). Exploring Power-

Performance Tradeoffs in Database Systems. 2010

IEEE 26th International Conference on Data

Engineering (ICDE 2010), 485–496.

 https://doi.org/10.1109/icde.2010.5447840

Ying, L., Tarek, A., & Avneesh, S. (2004). Design,

Implementation and Evaluation of Differentiated

Caching Services. IEEE Transactions on Parallel

and Distributed Systems, 15(5), 440–452.

 https://doi.org/10.1109/tpds.2004.1278101

Yu, J., & Buyya, R. (2006). Scheduling Scientific

Workflow Applications with Deadline and Budget

Constraints Using Genetic Algorithms. Scientific

Programming, 14(3–4), 217–230.

 https://doi.org/10.1155/2006/271608

Yu, Z., & Shi, W. (2008). A Planner-Guided Scheduling

Strategy for Multiple Workflow Applications. 2008

International Conference on Parallel Processing

Workshops,1–8.

https://doi.org/10.1109/icppw.2008.10

Zaki, K., & Saad, H. (2018). Adoption of Cloud Human

Resource Information System in Egyptian Hotels: An

Experimental Design Research. International

Journal of Heritage, Tourism and Hospitality, 12(1),

233–245.https://doi.org/10.21608/ijhth.2018.31514

Zebari, R. R., Abdulazeez, A. M., Zeebaree, D. Q., Zebari,

D. A., & Saeed, J. N. (2020). A Comprehensive

Review of Dimensionality Reduction Techniques for

Feature Selection and Feature Extraction. Journal of

Applied Science and Technology Trends, 1(1), 56–70.

 https://doi.org/10.38094/jastt1224

Zeebaree, S. R., Jacksi, K. F., & Zebari, R. R. (2020).

Impact Analysis of SYN Flood DDOS Attack on

HAPROXY and NLB Cluster-Base Web Servers.

Indonesian Journal of Electrical Engineering and

Computer Science, 19(1), 505–512.

 https://doi.org/10.11591/ijeecs.v19.i1.pp505-512

https://doi.org/10.1145/844128.844151
https://doi.org/10.1007/978-3-319-12286-1_8
https://doi.org/10.1109/tpds.2011.65
https://doi.org/10.1109/cis.2010.46
https://doi.org/10.1109/icde.2010.5447840
https://doi.org/10.1109/tpds.2004.1278101
https://doi.org/10.1155/2006/271608
https://doi.org/10.1109/icppw.2008.10
https://doi.org/10.21608/ijhth.2018.31514
https://doi.org/10.38094/jastt1224
https://doi.org/10.11591/ijeecs.v19.i1.pp505-512

