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Introduction

pathophysiology, rapid disease progression affecting multiple organ systems,
and initial lack of effective treatments. This study systematically examines
post-COVID-19 complications across major organ systems, including
respiratory dysfunction, cardiovascular complications, renal disorders,
musculoskeletal pain, gastrointestinal disturbances, neurological sequelae,
alopecia, endocrine and metabolic dysregulation, and mental health
disorders. The percentage of affected organ systems is demonstrated through
clinical scenarios, and evidence-based recommendation systems are
proposed to facilitate patient recovery. Disease monitoring is categorized into
two approaches: standard hospital-based treatment and individualized home-
based care. Unpredicted risk stratification (High or Low) is computed based
on significant clinical factors indicating potential organ damage. A hybrid
machine learning model combining Long Short-Term Memory (LSTM) and
Convolutional Neural Networks (CNN) is employed to assess post-COVID-
19 risk with enhanced accuracy. The proposed recommendation systems
include Al-based monitoring using wearable sensors, digital health and
telemedicine platforms, smart wearable devices, personalized nutrition and
dietary management, Al-driven mental health support systems, intelligent
rehabilitation and physical therapy programs, and blockchain-enabled Al
health records. These integrated systems aim to improve rehabilitation
outcomes, enhance patient care quality, and accelerate health recovery by
leveraging similar historical patient case data through the hybrid machine
learning framework.

Keywords: Post-COVID-19 Syndrome, Multi-Organ Complications, Health
Monitoring, Al-Based Recommendation Systems, Hybrid Machine
Learning, LSTM-CNN Model, Digital Health

Climate change and environmental air pollution
contribute to the periodic emergence of novel viral
pathogens, with the COVID-19 pandemic representing
the most significant global health crisis of the past
decade. Beginning in late 2019, SARS-CoV-2 caused
unprecedented mortality worldwide due to its
unpredictable pathophysiological behavior, multi-

Y SCIENCE
//// Publications

organ involvement, and rapid clinical deterioration.
The virus demonstrated capacity to affect multiple
organ systems simultaneously, often resulting in
sudden clinical decline and death. High mortality rates
were attributed to several factors, including systemic
inflammatory responses, cytokine storms, thrombotic
complications, and direct viral damage to various
organs.
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Table 1 presents a comprehensive overview of
organ-specific damage patterns observed during the
pandemic, evidence-based recovery practices for each
affected system, and the percentage distribution of
organ involvement among COVID-19 patients. The
multi-systemic nature of COVID-19 necessitates
targeted interventions tailored to specific organ
complications.

For respiratory and neurological complications, Al-
based algorithms integrated with wearable devices and
structured rehabilitation programs demonstrate
efficacy in monitoring disease progression and
facilitating recovery. Cardiovascular and renal
complications benefit from personalized care protocols
and continuous monitoring through remote patient
management systems. Gastrointestinal and mental
health issues are effectively addressed through Al-
powered chatbots and telemedicine platforms that
provide accessible, continuous patient support.

These technological interventions serve to minimize

Table 1. Multi-organ damage analysis during COVID

clinical risk, provide real-time health status updates,
and enable timely medical interventions for accelerated
recovery. The proposed framework processes patient
datasets containing relevant clinical attributes through
a hybrid machine learning model that classifies risk
levels as High or Low, enabling proactive care
management.

For populations identified as high-risk, specific
public health measures are recommended, including
targeted lockdowns in hotspot areas, mandatory mask-
wearing protocols, immunomodulatory therapies,
personalized medicine approaches, vaccination
campaigns, and strategic resource allocation for critical
care equipment such as ventilators and intensive care
unit beds. This integrated approach combining clinical
assessment, machine learning-based risk stratification,
and evidence-based interventions provides a
comprehensive framework for managing post-COVID-
19 complications and improving patient outcomes.

Affected Systems Complications Impairment Best Practices to Overcome
ARDS, Pneumonia, chronic . .
Respiratory System pulmonary fibrosis, and 80% Integration of Al-driven wearable sensors,

persistent hypoxia.

Myocardial infarction,
Myocarditis, and cerebrovascular
accidents (strokes).

Acute Kidney Injury (AKI) and
chronic renal failure requiring
hemodialysis.

Cardiovascular System

Renal System

Myalgia, chronic fatigue
syndrome, and persistent
sarcopenia (weakness).

Musculoskeletal System

. . Dyspepsia, chronic diarrhea, and

Gastrointestinal System yspepsia, ’
malabsorption.

Cognitive impairment (brain

fog), encephalitis, and neuro-

inflammation.

Neurological System

Alopecia (hair loss),
inflammatory dermatoses, and
cutaneous rashes.

Integumentary System

Thyroid dysfunction, new-onset
Diabetes Mellitus, and metabolic
syndrome.

Endocrine System

Major Depressive Disorder
(MDD), Generalized Anxiety
Disorder (GAD), and PTSD.

Psychological Health

telemedicine, and pulmonary rehabilitation.

Continuous hemodynamic monitoring via
30% wearables, Al-assisted stroke detection, and
cardiac rehabilitation.

Wearable renal monitoring systems, optimized
10% hydration/nutritional protocols, and automated
dialysis management.

Targeted physiotherapy, resistance training

0,
40% protocols, and multidisciplinary rehabilitation.
20% Precision nutritional therapy, microbiome
’ monitoring, and specialized GI teleconsultation.
20% Neuro-cognitive rehabilitation and wearable
’ neurological monitoring devices.
10% Specialized dermatological protocols, nutritional
’ supplementation, and psychological intervention.
Endocrine telemedicine, metabolic lifestyle
10% interventions, and continuous glucose monitoring
(CGM).
20% Digital mental health interventions, stress-
(V]

tracking wearables, and tele-psychiatry.
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Table 2. Technologies used as best practice for quick recovery

Technology-Driven Solution Description Improvement
Longitudinal tracking of physiological vitals (e.g., heart
Al-Integrated Wearable Biosensors rate variability) for the early detection of clinical 30
deterioration.
Virtualization of post-acute follow-up care to minimize
Telemedicine and Remote Clinical Consultations  pathogen exposure and alleviate healthcare facility 25
burdens.
.o Application of wearable devices to quantify post-acute
ToT-Enabled Recovery Monitoring Systems recovery trajectories and provide real-time biofeedback. 20
Precision Nutrition and AI-Driven Dietary Data-driven optimization of nutritional intake to facilitate 15
Interventions multi-organ recovery and immunomodulation.
Al-Enhanced Psychotherapeutic Support D.ep loyment (.)f conversa tional agents (ghatbots) and .
virtual therapists to mitigate psychological sequelae like 20
Systems .
PTSD and anxiety.
Automated monitoring of musculoskeletal and pulmonary
Al-Guided Telerehabilitation Protocols exercises tailored to individual recovery rates and 25
biomechanics.
Blockchain-Enabled Interoperable Health Decentralized and secure architectures for the seamless, 10

Records

multi-institutional exchange of patient health data.

Table 3. Demonstration of the category of attributes involved in the dataset

Category High-Risk Factors

Demographic Advanced age (>65 years), male sex, and specific ethnic/minority backgrounds.
Clinical Diabetes, Cardiovascular disease, obesity, chronic lung/kidney disease, cancer
Behavioral Unvaccinated, high-risk occupations, poor mask usage, travel history
Environmental Poor air quality, High population density, low socioeconomic status
Biological/Genetic ACE2 receptor expression, Blood type, Genetic predisposition

Immune System

Prior infection, Immunocompromised, unvaccinated

Viral Exposure to variants of concern, High viral load

Laboratory Markers D-dimer, Elevated CRP, Lymphopenia, Low SpO2

Geographic/Temporal Colder seasons, High-transmission regions

Long COVID Severe acute infection, female gender, middle age, pre-existing conditions

Literature Review

Numerous studies have investigated COVID-19
disease prediction, detection, and post-recovery
complications using various performance metrics and
methodological approaches. This section reviews
relevant literature addressing disease characterization,
diagnostic methods, and technological interventions.

Post-COVID-19 Complications and Recovery

Anaya et al. (2021) identified optimal therapeutic
strategies for addressing COVID-19 and post-COVID
complications, noting that approximately 20% of
patients experienced persistent musculoskeletal,

neurological, and gastrointestinal symptoms following
acute infection, while 80% achieved full recovery.
Augustin et al. (2021) characterized two predominant
long-term symptom clusters in 2021: persistent
anosmia (loss of smell) and chronic fatigue with
respiratory dysfunction, employing univariate and
multivariate logistic regression models for long-term
outcome assessment.

Rosenstein et al. (2024) analyzed participation
restrictions and activity limitations across genders,
identifying varying fatigue severity levels requiring
differentiated  rehabilitation  protocols,  though
symptom presentation showed no significant gender-
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based differences. Bhatnagar et al. (2024) conducted a
systematic review identifying four primary post-
COVID symptoms—cough, anxiety, joint pain, and
dyspnea—with  secondary symptoms including
headache, limb weakness, cognitive impairment, and
fatigue.

Islam et al. (2024) demonstrated that neurological,
demographic, and physiological factors significantly
affect post-COVID outcomes. The study employed
Chi-square tests and Pearson correlation coefficients to
determine factor relationships, with Information Gain
and Gini index used for feature selection. Decision tree
classifiers demonstrated superior performance for this
application domain.

Lenz et al. (2023) reported that 80% of COVID-19
patients experienced at least one persistent symptom,
including gastrointestinal, cardiovascular,
neurological, and mental health disorders, with severity
particularly pronounced in individuals aged 65 years
and older. Davis et al. (2023) characterized multi-
system involvement in long COVID, encompassing
neurological complications, anxiety disorders, physical
deconditioning, and chronic fatigue syndrome,
emphasizing vaccination's role in viral load reduction
and disease severity mitigation.

Carlile et al. (2024) developed standardized
assessment frameworks using validated questionnaires
to quantify COVID-19 impact on health-related quality
of life and health outcome measures. Miiller et al.
(2024) demonstrated that physical strength recovery
required 6-12 months of continuous rehabilitation, with
balance function and functional strength showing
significant improvement through structured
rehabilitation programs. Owen et al. (2024) compared
pre-COVID and post-COVID quality of life, mental
health status, and support mechanisms, identifying
substantial quality-of-life reductions attributable to
long COVID complications.

Machine Learning and Deep Learning
Approaches for COVID-19 Detection

Dumakude and Ezugwu (2023) proposed a hybrid
model combining CNN with feedforward neural
networks and XGBoost classifiers, demonstrating
superior effectiveness and efficiency compared to
baseline models. Kumar et al. (2022) evaluated deep
learning techniques for COVID-19 detection from a
cost-effectiveness  perspective, comparing CNN,
reinforcement learning, Al-based systems, and
traditional machine learning models, with deep
learning approaches demonstrating optimal detection
accuracy.

Iyafei et al. (2022) distinguished between
symptomatic and asymptomatic COVID-19 cases,
identifying asymptomatic infections as particularly
hazardous due to undetected physiological
deterioration affecting respiratory and cardiovascular
systems. The study advocated Al-driven wearable
devices for continuous monitoring and early
abnormality detection. Hussein et al. (2024) addressed
limitations of expensive and time-consuming COVID-
19 detection methods by proposing a custom CNN
architecture  incorporating dropout and batch
normalization techniques to eliminate overfitting and
enhance performance.

Das et al. (2023) emphasized the necessity of both
traditional machine learning and advanced deep
learning approaches for pandemic classification and
detection, identifying two critical research priorities:
minimizing false detection rates and reducing model
complexity. Kumari et al. (2023) demonstrated that
GoogleNet achieved superior overall accuracy, while
ResNet50 achieved exceptional sensitivity (>99%) and
specificity (99%), establishing these architectures as
benchmark models for future improvements.

Akhtar et al. (2024) developed a multimodal hybrid
approach combining ResNet50 for image analysis and
VGGish for speech analysis, achieving 99.7%
accuracy—substantially exceeding unimodal
approaches. This hybrid model demonstrated superior
performance across comparative evaluations with
existing methodologies.

Diagnostic Methods and Clinical Assessment

Corman et al. (2020) established discrimination
protocols between 2019-nCoV and SARS-CoV,
developing diagnostic assays in collaboration with
European laboratory networks, primarily identifying
respiratory complications as the predominant clinical
manifestation. Ai et al. (2020) compared two
diagnostic modalities—computed tomography (CT)
and reverse transcription polymerase chain reaction
(RT-PCR)—observing that CT achieved 97%
sensitivity and required shorter turnaround times than
RT-PCR  for  positive-to-negative  conversion
assessment, establishing CT as a primary diagnostic
tool.

Wang et al. (2020) conducted clinical assessments
analyzing viral patterns across multiple biological
specimens including blood, urine, feces, bodily fluids,
and sputum, identifying limitations in viral load
quantification across disease stages. Sheridan (2020)
evaluated rapid diagnostic tests, including antigen and
molecular assays, noting inferior sensitivity compared
to RT-PCR and emphasizing the need for improved
performance, cost-effectiveness, and accuracy.
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Dinnes et al. (2020) identified substantial gaps in
antigen and molecular testing protocols, including high
variability and lack of standardization, advocating for
effective point-of-care testing frameworks. Aswathy et
al. (2021) employed transfer learning architectures
(ResNet, DenseNet) for CT image feature extraction
and backpropagation networks for disease severity
classification (low, medium, high). Abboju et al.
(2024) reviewed deep learning techniques for COVID-
19 severity detection and classification in response to
high mortality rates.

Yao etal. (2020) developed an SVM-based machine
learning model initially incorporating 32 features,
subsequently refined to 28 biomarkers through feature
selection, achieving improved accuracy for COVID-19
severity classification.

Technological Interventions and Applications

Rao et al. (2023) developed a mobile application

Table 4. Significant studies over COVID impact, and detection

integrating hospital databases with GPS services to
display COVID-19 patient counts by geographic
location, enabling users to receive alerts about high-
risk zones. Tumuluru et al. (2020) designed an
intelligent protective mask incorporating air filtration
systems and object detection capabilities, purifying
contaminated air and alerting users to infected surfaces.

Dey and Sangaraju (2024) addressed data storage
and load balancing challenges using swarm intelligence
algorithms for global and local load distribution,
ensuring optimal resource allocation and data center
performance during demand fluctuations. Dey and
Sangaraju (2023) proposed a hybrid load balancing
approach optimizing performance, minimizing latency,
and enhancing scalability for healthcare data
management systems.

Table 4 summarizes the significant studies
reviewed, presenting their methodological approaches,
focused research areas, and principal findings.

Study (Year) Key Focus

Methods Used

Key Findings AI/ML Relevance

Multi-organ damage

20% suffered from Al-based organ

Anaya et al., 2021

Augustin et al., 2021

Bhatnagar et al., 2024

Dumakude &
Ezugwu, 2023

Hussein et al., 2024

analysis

Effect on anosmia,
fatigue due to long-
term COVID

Symptoms such as
cough, anxiety, joint

pain, breath shortage.

COVID risk
prediction using a
Hybrid AI model

Deep learning for
cost/time-efficient
COVID detection

Therapies and clinical

Multi-variant logistic
regression, and
univariate.

Systematic review

CNN, Feed forward
NN, XGBoost

Custom-CNN (with
dropout & batch
normalization)

long-term organ
damage.

Respiratory/fatigue
and anosmia Issues

Headache, limb
weakness,
forgetfulness)

Accuracy, recall, F1-
score, specificity

Prevented overfitting,
achieved high
accuracy

monitoring with
wearables.

Hybrid AI (LSTM +
CNN) for prediction

Decision trees &
feature selection for
symptom
classification

Hybrid models
outperform single
models.

Al-driven diagnostics
from CT scans, and
wearables.

Materials and Methods

Corona affected patients, although they have
recovered, would impact on their body organs, which
determines the risk of corona. The risks would be
classified as Low or High. In this, Fig.1 demonstrates
the modules involved in the COVID analysis, such as
datasets, data preprocessing, a hybrid model for risk
prediction based on significant parameters, body
organs affected, Recommendation practices, and

evaluation of accuracy. The pseudo-procedure for
determining whether the risk is high or low is used in
the CNN and LSTM framework. Fig.2 demonstrates the
flow of activities involved in determining the severity
of the corona over the patient's life. In this, significant
activities considered are data preprocessing, hybrid
model building, and model training. The other
activities, such as data sources, body organs affected,
and recommendation best practices, are demonstrated
in the Introduction chapter.
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Data Preprocessing

Datasets

AN

A

Hybrid model (CNN+LSTM)

Risk Prediction with Post-
COVID

Recommendation Practices

Modal Training

Body Organs Affected

Fig. 1. Modules of Post-COVID Risk Prediction

PS1: Pseudo_Procedure Post COVID risk prediction(Database[][]):

Input:Database[][]
Output: Accuracy

Step 1: Load the patient database that consists of rows and attributes

Step 2: Apply data preprocessing

2.1 For numerical, handle missing with means, and for categorical, handle missing with mode.

2.2 Apply normalization to bring into standard values.

2.3 One hot encoding technique is applied to categorical features.
2.4 The decomposition of data into 80% and 20% based on groups training, and testing.

Step 3: Feature selection

3.1 Significant features are identified, such as comorbidities like hypertension and diabetes, D-dimer, CRP, lymphocyte count,

acute symptoms like fatigue, and breathing status.

3.2 Use SHAP for significant attributes with the assignment of weights in the evaluation of the risk.

Step 4: Build LSTM+CNN model

4.1 for temporal data, call LSTM in which no.of temporal features, and timesteps

4.2 For spatial data, call CNN

4.3 Concatenate outputs of LSTM and CNN.

4.4 Include fully connected layers for final prediction

4.5 For binary classification, use the sigmoid function.
Step 5: Train the model

5.1 Adam as optimizer, then binary cross-entropy are used in the execution.

5.2 Iterate till convergence is reached

5.3 To avoid overfitting, dropout concept as well as regularization L2 are applied.
Step 6: Evaluate the model using accuracy, precision, recall, and F1-Score
Accuracy=True Positives+True Negatives/ Total Number of Cases Where
Precision=True Positives (TP) / (True Positives (TP)+False Positives (FP))
Recall (Sensitivity)=True Positives (TP) / (True Positives (TP)+False Negatives (FN))

F1 Score=2x(PrecisionxRecall) / Precision+Recall

From PS1, the order of activities involved are
loading of databases, data preprocessing to get quality
data, Call CNN for spatial data, and Call LSTM for
temporal data including the number of temporal
features, and timesteps, combine the outputs of CNN
and LSTM, then consolidate the predictions using fully
connected layers, then use the sigmoid function for
binary classification, and follows model effectiveness

evaluation through accuracy, and precision.

From PS2, convert spatial into 4D, and temporal
into 3D, and use CNN in case of spatial and LSTM in
case of temporal. Outputs of both CNN and LSTM are
combined, and then a fully connected layer is added to
the existing system. Then, the model is trained for some
epochs and avoids overfitting using standardization.
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PS2: Pseudo_Procedure CNN+LSTM(Database[][]):
Input: Database[][]
Output: High or Low
Step 1: Load temporal and spatial data
1.1 Convert temporal data into 3D array that consists of no. of temporal features, timesteps, and patients

1.2 Concert spatial data into 4D array that consists of patients, image_width, image height, and channels.
Step 2: Construct CNN for spatial data
2.1 Accept input layer consists of image width, image_height, and channels.
2.2 Add Conv2D(), MaxPooling2D() layers
2.3 Flatten the output of CNN to integrate with LSTM
Step 3: Construct LSTM for temporal data
3.1 Accept input layer consists of no. of temporal features, and timesteps
3.2 Add LSTM() layer
Step 4: Concatenate the outputs of LSTM and CNN
4.1 Add fully connected layers
4.2 Call Sigmoid function for output the risk as High or Low
Step 5: Train the model
5.1 Adam as optimizer, then binary cross-entropy are used in the execution.
5.2 Iterate till convergence is reached
5.3 To avoid overfitting, the dropout concept as well as the regularization L2 are applied.
Step 6: Evaluate the model using accuracy, precision, recall, and F1-Score separately for CNN, and LSTM

Load the dataset
+

Data Preprocessing

v

Significant feature selection using SHAP

v
Prepare the spatial and temporal data

Category of Data?

Spatial Temporal

. 7

Combine the features for better assessment

¥
Combine outputs of LSTM and CNN

.

Fully Connected layers

v

Binary classification using sipmoid()

v

Model evaluation

LSTM

Fig. 2. Order of activities in post-COVID impact risk prediction
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Table 5. Demonstration of measures over the considered models against our hybrid model

Model Description Accuracy Performance Metrics
Logistic Regression Egggcbwﬁkﬁmnb%ﬂhmasmnﬁwﬂ 85%  Precision: 80%, Recall: 78%, F1: 79%
Random Forest SS;;;L?SE?E;Z?S?SS tl;e;irsessmn, an 90% Precision: 88%, Recall: 87%, F1: 87%
XGBoost Egzslgrgfg’ f:i‘l’l?:f:ce’ the gradient 93%  Precision: 90%, Recall: 91%, F1: 90%
Support Vector Machine (SVM) E;;g;fji‘gasg ti?sdrf;g;;ss“’n using 88%  Precision: 85%, Recall: 84%, F1: 84%
k-Nearest Neighbors (k-NN) i(;r dﬂff:ﬁg?;ﬁ:&a simple, non-parametric  gyo, pyciion: 80%, Recall: 79%, F1: 79%
Neural Networks (NN) i(;rrﬁ; Zﬁiﬁgﬁgﬁe}x’gmon’ a deep 92%  Precision: 89%, Recall: 90%, F1: 89%
Networks with Convolutions: It’sa d.eep.learmng model used for 95% Precision: 93%. Recall: 92%, F1: 92%
CNN analyzing images.
Short-Tem.l Memory with long It’'sa ngtwork preferreq for time-series 949% Precision: 91%. Recall: 90%, F1: 90%
dependencies: LSTM sequential data processing.
Gradient Boosting Machines For clasmﬁcathn an(li regression, an 92% Precision: 90%, Recall: 89%. F1: 89%
(GBM) ensemble technique is preferred.
Decision Trees E‘; ﬂZZZLﬁ;fJﬁ ;I:i e simple 85%  Precision: 82%, Recall: 81%, F1: 81%
, _
Naive Bayes ii?g ?;p?:%’;iegleorem’ a probabilistic 80%  Precision: 75%, Recall: 74%, F1: 74%
. N . .
Hybrid Models (e.g., CNN For improved performance, combine a few 98% Precision: 94%, Recall: 93%, F1: 93%
LSTM) models.
Accuracy(%)
100
a0
80
70
60
a0
40
30
20
10
0
& S = R S
@”\0 Qo"e GQ;PQ f:.'a ,g@ ,@3’ @qﬁ‘ (s-q’ \'3' Q;‘;\Q‘ \,é\
Q._z,i's bo@ @Q\G e @0& 0“5: ) ..;é’f’ _ \‘}o 52 é‘\*
¥ o & SR & & ST = S
S < N & N - i I 4
& & = & 3 & & &
g _‘g.z.& 2? \;‘3} S° <@ e o
& ﬁxﬁﬁk Nl & %oé’ &
M * & = S &
o & & &% o
S > 2 S
Q-"a (::\ "2\
Q()

Fig. 3. Accuracies dictate the effectiveness of the methods
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Table 6. Technology solutions impact on COVID

Table 7. Affected body organs due to post-COVID

Technology-Driven Solution Improvement Organ/System Affected Estimated Damage
Al-Based Monitoring Using Wearable .
& & 30% Respiratory System 80
Sensors
Digital and Telemedicine 25% Cardiovascular System 30
Smart Wearable Devices 20% Kidneys 10
Personalized Nutrition and Diet 15% Musculoskeletal System 40
Management
Al-Based Mental Support Systems 20% Gastrointestinal System 20
Smart Rehabilitation and Physical .
Y 25% Neurological System 20
Therapy
Blockchain Al Health Records 10% Hair and Skin 10
Endocrine System 10
% of Improvement 4
Mental Health 20
Blockchain Al Health Records | INEEER
Smart Rehabilitation and Physica  Therapy | Estimated % of Damage
Al-Based Mental Support Systems | N El
80
Personalized Nutrition and Diet Management | 0
60
Smart Wearable Devices | 30
40
Digital and Telemedicine | INNERNGTNNEE 30
2
Al-Based Monitoring Using Wearable Sensors [ 10
0
0 5 10 15 20 25 30 3 N s N N N
2 J L}Q_((‘ _\?5\ *\ai \2,\\ ) :.\Q'\(\ h@,‘l\\ 8 & \%(\ 23\&
Fig. 4. Technology-driven solutions for Long COVID & \_3(““\ A P ra ?\j‘ & \@8\
A o ) ) S 3 & &
. « g 3 ;a* ch & \:EQ o ‘!\
From Fig.2, the order of activities performed are & ¢ § & &ﬁ@ ¢
data preprocessing, feature selection, CNN to be called ¢ ¥ &

for spatial data, LSTM is called for temporal data, a
hybrid model is called for combined features,
hyperparameter tuning by SHAP model as well as able
to interpret, and training the model using binary
classification for output such as High or Low damage.

Results

In this, various ML and DL methods are considered
for comparison against our proposed model, such as
post-COVID impact and recommendation practices, as
well as the prediction of risk during the COVID-19
pandemic. Table 5 demonstrates the accuracies of the
considered models, in which our proposed model
outperforms in the accuracy.

Fig. 5. Body organ damage demonstration

In Fig. 4, and Fig. 5, solutions that are to follow for
quick recovery from the COVID virus and post-COVID
analysis on the damage of body organs that influence
patient health. From Fig.4, Al-based monitoring helps
to provide instant details of health and hence would
follow prescription personally by the expert. From
Fig.5, the organs that are most affected are respiratory,
cardiovascular, and musculoskeletal, which degrade
the health of patients even after they are cured of
COVID-19.

Table 8 demonstrates the features, including the lab
tests, that are extracted from the clinical scenario, and
the outputs are High when comorbidities have High
values. Table 9 demonstrates the clinical values as high
as well as high vital patterns extracted from imaging
modality.
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Table 8. With lab tests scenario

Age Diabetes  Hypertension  Vaccination Status D-Dimer CRP Lymphocyte Count Risk Level
65 Yes Yes Fully Vaccinated 0.8 10.5 1.2 High
45 No No Partially Vaccinated 0.3 5.0 2.0 Low
70 Yes Yes Unvaccinated 1.5 20.0 0.8 High
Table 9. With lab tests, and imaging scenario
. S Vitals Over .
Patient . . Vaccination D- Lymphocyte  Chest X-Ray . Risk
ID Age Diabetes Hypertension Status Dimer CRP Count (Image) Time lg::)nporal Level
Fully [[98, 120/80, .
1 65 Yes Yes Vaccinated 0.8 10.5 1.2 Imagel 95], .] High
Partially [[99, 110/70,
2 45 No No Vaccinated 0.3 5.0 2.0 Image2 98], ..] Low
3 70 Yes Yes Unvaccinated 1.5 20.0 0.8 Image3 [[98’2]1 30/]90’ High
Table 10. Accuracies demonstration of considered tools in CORONA risk prediction
Tool Description Accuracy Key Features
XGBoost For speed and performance, a gradient boosting 93 Ensures high accuracy for clinical
library is designed. and lab data.
IBM Watson Health Healthcare analytics Al-powered platform. 90 Lab results, HER, and imaging for
risk prediction.
Microsoft Azure For building and deploying models, a Cloud- 92 Hybrid models with scalability.
Machine Learning based ML platform is designed.
Google Cloud Al Al and ML services based on the Cloud. 93 Large-scale data processing and
model deployment.
RapidMiner For ML and predictive analytics, a data science 88 For building ML workflows, it's a
platform is designed. user-friendly interface.
H20.ai An open-source Al platform for ML. 90 Supports AutoML for automated
model selection and tuning.
Weka ML toolkit for data mining and predictive 85 For building and evaluating ML
modeling based on java. models, a Ul based.
KNIME Data analytics platform with open source. 88 Visual programming for ML
workflows.
IBM SPSS Modeler Predictive analytics and data mining tool. 85 For building predictive models, the
UI model is based.
Amazon SageMaker ML service by AWS cloud 93 From data preparation to
deployment, end-to-end ML-based.
Orange Data visualization and ML tool with open- 85 For ML, it provides a visual
source. programming interface.
IBM Cognos Analytics With predictive analytics capabilities, a business 85 For risk prediction and reporting, it
intelligence tool integrates with ML models.
Risk prediction using Predicts the risk based on abnormal values 98 SHAP, combining the outputs of

CNN and LSTM

possessed by significant factors.

CNN and LSTM.
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Fig. 6. Accuracies of the tools considered against our proposed model
From Table 10, specific market available tools are Conference Proceedings, 3007, 030004.

demonstrated with accuracies, along with their
significant features. These tools against the hybrid
model (CNN+LSTM) are compared and determined the
accuracies. The accuracy of the proposed approach is
best when compared against the other considered tools
towards risk assessment.

Conclusion

The coronavirus has resulted in many people dying
due to its unpredictable behavior, particularly its nature
changes to severe in a few days. This behavior would
cause many people who are not health conscious, not
involved in rehabilitation, not consuming nutritious
food, and older age. In this, the risk of coronavirus is
severe or normal to be determined using a hybrid model
that consists of CNN and LSTM, in which the former
for spatial, and the latter is for temporal. The impact of
post-COVID may affect any of the body's organs, such
as the respiratory system, heart problems, muscle
weakening, etc. The recommended practices to follow
would help to recover from infection and return to a
healthy normal or an improvement in health than the
earlier stage. The significant recommendations
proposed are Al-based monitoring, Effective
rehabilitation and physical therapy, Digital and
telemedicine, and Al mentor support, as well as real-
time monitoring using wearable devices. In this, two
aspects in which one is on organ damage and
technology solutions to overcome from, and the second
is severity classification using a hybrid model of CNN
and LSTM.
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