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Abstract: The COVID-19 pandemic (2019-2022) resulted in significant 

global mortality, largely attributed to the virus's unpredictable 

pathophysiology, rapid disease progression affecting multiple organ systems, 

and initial lack of effective treatments. This study systematically examines 

post-COVID-19 complications across major organ systems, including 

respiratory dysfunction, cardiovascular complications, renal disorders, 

musculoskeletal pain, gastrointestinal disturbances, neurological sequelae, 

alopecia, endocrine and metabolic dysregulation, and mental health 

disorders. The percentage of affected organ systems is demonstrated through 

clinical scenarios, and evidence-based recommendation systems are 

proposed to facilitate patient recovery. Disease monitoring is categorized into 

two approaches: standard hospital-based treatment and individualized home-

based care. Unpredicted risk stratification (High or Low) is computed based 

on significant clinical factors indicating potential organ damage. A hybrid 

machine learning model combining Long Short-Term Memory (LSTM) and 

Convolutional Neural Networks (CNN) is employed to assess post-COVID-

19 risk with enhanced accuracy. The proposed recommendation systems 

include AI-based monitoring using wearable sensors, digital health and 

telemedicine platforms, smart wearable devices, personalized nutrition and 

dietary management, AI-driven mental health support systems, intelligent 

rehabilitation and physical therapy programs, and blockchain-enabled AI 

health records. These integrated systems aim to improve rehabilitation 

outcomes, enhance patient care quality, and accelerate health recovery by 

leveraging similar historical patient case data through the hybrid machine 

learning framework.  

 

Keywords: Post-COVID-19 Syndrome, Multi-Organ Complications, Health 

Monitoring, AI-Based Recommendation Systems, Hybrid Machine 

Learning, LSTM-CNN Model, Digital Health 

 

Introduction  

Climate change and environmental air pollution 

contribute to the periodic emergence of novel viral 

pathogens, with the COVID-19 pandemic representing 

the most significant global health crisis of the past 

decade. Beginning in late 2019, SARS-CoV-2 caused 

unprecedented mortality worldwide due to its 

unpredictable pathophysiological behavior, multi- 

 

organ involvement, and rapid clinical deterioration. 

The virus demonstrated capacity to affect multiple 

organ systems simultaneously, often resulting in 

sudden clinical decline and death. High mortality rates 

were attributed to several factors, including systemic 

inflammatory responses, cytokine storms, thrombotic 

complications, and direct viral damage to various 

organs. 
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Table 1 presents a comprehensive overview of 
organ-specific damage patterns observed during the 
pandemic, evidence-based recovery practices for each 
affected system, and the percentage distribution of 
organ involvement among COVID-19 patients. The 
multi-systemic nature of COVID-19 necessitates 
targeted interventions tailored to specific organ 
complications. 

For respiratory and neurological complications, AI-

based algorithms integrated with wearable devices and 

structured rehabilitation programs demonstrate 

efficacy in monitoring disease progression and 

facilitating recovery. Cardiovascular and renal 

complications benefit from personalized care protocols 

and continuous monitoring through remote patient 

management systems. Gastrointestinal and mental 

health issues are effectively addressed through AI-

powered chatbots and telemedicine platforms that 

provide accessible, continuous patient support. 

These technological interventions serve to minimize 

clinical risk, provide real-time health status updates, 

and enable timely medical interventions for accelerated 

recovery. The proposed framework processes patient 

datasets containing relevant clinical attributes through 

a hybrid machine learning model that classifies risk 

levels as High or Low, enabling proactive care 

management. 

For populations identified as high-risk, specific 

public health measures are recommended, including 

targeted lockdowns in hotspot areas, mandatory mask-

wearing protocols, immunomodulatory therapies, 

personalized medicine approaches, vaccination 

campaigns, and strategic resource allocation for critical 

care equipment such as ventilators and intensive care 

unit beds. This integrated approach combining clinical 

assessment, machine learning-based risk stratification, 

and evidence-based interventions provides a 

comprehensive framework for managing post-COVID-

19 complications and improving patient outcomes.  

 

Table 1. Multi-organ damage analysis during COVID 

Affected Systems Complications Impairment Best Practices to Overcome 

Respiratory System 

ARDS, Pneumonia, chronic 

pulmonary fibrosis, and 

persistent hypoxia. 

80% 
Integration of AI-driven wearable sensors, 

telemedicine, and pulmonary rehabilitation. 

Cardiovascular System 

Myocardial infarction, 

Myocarditis, and cerebrovascular 

accidents (strokes). 

30% 

Continuous hemodynamic monitoring via 

wearables, AI-assisted stroke detection, and 

cardiac rehabilitation. 

Renal System 

Acute Kidney Injury (AKI) and 

chronic renal failure requiring 

hemodialysis. 

10% 

Wearable renal monitoring systems, optimized 

hydration/nutritional protocols, and automated 

dialysis management. 

Musculoskeletal System 

Myalgia, chronic fatigue 

syndrome, and persistent 

sarcopenia (weakness). 

40% 
Targeted physiotherapy, resistance training 

protocols, and multidisciplinary rehabilitation. 

Gastrointestinal System 
Dyspepsia, chronic diarrhea, and 

malabsorption. 
20% 

Precision nutritional therapy, microbiome 

monitoring, and specialized GI teleconsultation. 

Neurological System 

Cognitive impairment (brain 

fog), encephalitis, and neuro-

inflammation. 

20% 
Neuro-cognitive rehabilitation and wearable 

neurological monitoring devices. 

Integumentary System 

Alopecia (hair loss), 

inflammatory dermatoses, and 

cutaneous rashes. 

10% 
Specialized dermatological protocols, nutritional 

supplementation, and psychological intervention. 

Endocrine System 

Thyroid dysfunction, new-onset 

Diabetes Mellitus, and metabolic 

syndrome. 

10% 

Endocrine telemedicine, metabolic lifestyle 

interventions, and continuous glucose monitoring 

(CGM). 

Psychological Health 

Major Depressive Disorder 

(MDD), Generalized Anxiety 

Disorder (GAD), and PTSD. 

20% 
Digital mental health interventions, stress-

tracking wearables, and tele-psychiatry. 
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Table 2. Technologies used as best practice for quick recovery 

Technology-Driven Solution Description Improvement 

AI-Integrated Wearable Biosensors 

Longitudinal tracking of physiological vitals (e.g., heart 

rate variability) for the early detection of clinical 

deterioration. 

30 

Telemedicine and Remote Clinical Consultations 

Virtualization of post-acute follow-up care to minimize 

pathogen exposure and alleviate healthcare facility 

burdens. 

25 

IoT-Enabled Recovery Monitoring Systems 
Application of wearable devices to quantify post-acute 

recovery trajectories and provide real-time biofeedback. 
20 

Precision Nutrition and AI-Driven Dietary 

Interventions 

Data-driven optimization of nutritional intake to facilitate 

multi-organ recovery and immunomodulation. 
15 

AI-Enhanced Psychotherapeutic Support 

Systems 

Deployment of conversational agents (chatbots) and 

virtual therapists to mitigate psychological sequelae like 

PTSD and anxiety. 

20 

AI-Guided Telerehabilitation Protocols 

Automated monitoring of musculoskeletal and pulmonary 

exercises tailored to individual recovery rates and 

biomechanics. 

25 

Blockchain-Enabled Interoperable Health 

Records 

Decentralized and secure architectures for the seamless, 

multi-institutional exchange of patient health data. 
10 

Table 3. Demonstration of the category of attributes involved in the dataset 

Category High-Risk Factors 

Demographic  Advanced age (>65 years), male sex, and specific ethnic/minority backgrounds. 

Clinical Diabetes, Cardiovascular disease, obesity, chronic lung/kidney disease, cancer 

Behavioral Unvaccinated, high-risk occupations, poor mask usage, travel history 

Environmental Poor air quality, High population density, low socioeconomic status 

Biological/Genetic ACE2 receptor expression, Blood type, Genetic predisposition 

Immune System Prior infection, Immunocompromised, unvaccinated 

Viral Exposure to variants of concern, High viral load 

Laboratory Markers D-dimer, Elevated CRP, Lymphopenia, Low SpO2 

Geographic/Temporal Colder seasons, High-transmission regions 

Long COVID Severe acute infection, female gender, middle age, pre-existing conditions 

Literature Review 

Numerous studies have investigated COVID-19 

disease prediction, detection, and post-recovery 

complications using various performance metrics and 

methodological approaches. This section reviews 

relevant literature addressing disease characterization, 

diagnostic methods, and technological interventions. 

Post-COVID-19 Complications and Recovery 

Anaya et al. (2021) identified optimal therapeutic 

strategies for addressing COVID-19 and post-COVID 

complications, noting that approximately 20% of 

patients experienced persistent musculoskeletal, 

neurological, and gastrointestinal symptoms following 

acute infection, while 80% achieved full recovery. 

Augustin et al. (2021) characterized two predominant 

long-term symptom clusters in 2021: persistent 

anosmia (loss of smell) and chronic fatigue with 

respiratory dysfunction, employing univariate and 

multivariate logistic regression models for long-term 

outcome assessment. 

Rosenstein et al. (2024) analyzed participation 

restrictions and activity limitations across genders, 

identifying varying fatigue severity levels requiring 

differentiated rehabilitation protocols, though 

symptom presentation showed no significant gender-
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based differences. Bhatnagar et al. (2024) conducted a 

systematic review identifying four primary post-

COVID symptoms—cough, anxiety, joint pain, and 

dyspnea—with secondary symptoms including 

headache, limb weakness, cognitive impairment, and 

fatigue. 

Islam et al. (2024) demonstrated that neurological, 

demographic, and physiological factors significantly 

affect post-COVID outcomes. The study employed 

Chi-square tests and Pearson correlation coefficients to 

determine factor relationships, with Information Gain 

and Gini index used for feature selection. Decision tree 

classifiers demonstrated superior performance for this 

application domain. 

Lenz et al. (2023) reported that 80% of COVID-19 

patients experienced at least one persistent symptom, 

including gastrointestinal, cardiovascular, 

neurological, and mental health disorders, with severity 

particularly pronounced in individuals aged 65 years 

and older. Davis et al. (2023) characterized multi-

system involvement in long COVID, encompassing 

neurological complications, anxiety disorders, physical 

deconditioning, and chronic fatigue syndrome, 

emphasizing vaccination's role in viral load reduction 

and disease severity mitigation. 

Carlile et al. (2024) developed standardized 

assessment frameworks using validated questionnaires 

to quantify COVID-19 impact on health-related quality 

of life and health outcome measures. Müller et al. 

(2024) demonstrated that physical strength recovery 

required 6-12 months of continuous rehabilitation, with 

balance function and functional strength showing 

significant improvement through structured 

rehabilitation programs. Owen et al. (2024) compared 

pre-COVID and post-COVID quality of life, mental 

health status, and support mechanisms, identifying 

substantial quality-of-life reductions attributable to 

long COVID complications. 

Machine Learning and Deep Learning 
Approaches for COVID-19 Detection 

Dumakude and Ezugwu (2023) proposed a hybrid 
model combining CNN with feedforward neural 
networks and XGBoost classifiers, demonstrating 
superior effectiveness and efficiency compared to 
baseline models. Kumar et al. (2022) evaluated deep 
learning techniques for COVID-19 detection from a 
cost-effectiveness perspective, comparing CNN, 
reinforcement learning, AI-based systems, and 
traditional machine learning models, with deep 
learning approaches demonstrating optimal detection 
accuracy. 

Iyafei et al. (2022) distinguished between 

symptomatic and asymptomatic COVID-19 cases, 

identifying asymptomatic infections as particularly 

hazardous due to undetected physiological 

deterioration affecting respiratory and cardiovascular 

systems. The study advocated AI-driven wearable 

devices for continuous monitoring and early 

abnormality detection. Hussein et al. (2024) addressed 

limitations of expensive and time-consuming COVID-

19 detection methods by proposing a custom CNN 

architecture incorporating dropout and batch 

normalization techniques to eliminate overfitting and 

enhance performance. 

Das et al. (2023) emphasized the necessity of both 

traditional machine learning and advanced deep 

learning approaches for pandemic classification and 

detection, identifying two critical research priorities: 

minimizing false detection rates and reducing model 

complexity. Kumari et al. (2023) demonstrated that 

GoogleNet achieved superior overall accuracy, while 

ResNet50 achieved exceptional sensitivity (>99%) and 

specificity (99%), establishing these architectures as 

benchmark models for future improvements. 

Akhtar et al. (2024) developed a multimodal hybrid 

approach combining ResNet50 for image analysis and 

VGGish for speech analysis, achieving 99.7% 

accuracy—substantially exceeding unimodal 

approaches. This hybrid model demonstrated superior 

performance across comparative evaluations with 

existing methodologies. 

Diagnostic Methods and Clinical Assessment 

Corman et al. (2020) established discrimination 

protocols between 2019-nCoV and SARS-CoV, 

developing diagnostic assays in collaboration with 

European laboratory networks, primarily identifying 

respiratory complications as the predominant clinical 

manifestation. Ai et al. (2020) compared two 

diagnostic modalities—computed tomography (CT) 

and reverse transcription polymerase chain reaction 

(RT-PCR)—observing that CT achieved 97% 

sensitivity and required shorter turnaround times than 

RT-PCR for positive-to-negative conversion 

assessment, establishing CT as a primary diagnostic 

tool. 

Wang et al. (2020) conducted clinical assessments 

analyzing viral patterns across multiple biological 

specimens including blood, urine, feces, bodily fluids, 

and sputum, identifying limitations in viral load 

quantification across disease stages. Sheridan (2020) 

evaluated rapid diagnostic tests, including antigen and 

molecular assays, noting inferior sensitivity compared 

to RT-PCR and emphasizing the need for improved 

performance, cost-effectiveness, and accuracy. 



Boddeti Jaggan Mohan Ravi Kumar et al, Journal of Computer Science 2025, 21(11): 2593-2604 

DOI: 10.3844/jcssp.2025.2593.2604 

 

2597 

Dinnes et al. (2020) identified substantial gaps in 

antigen and molecular testing protocols, including high 

variability and lack of standardization, advocating for 

effective point-of-care testing frameworks. Aswathy et 

al. (2021) employed transfer learning architectures 

(ResNet, DenseNet) for CT image feature extraction 

and backpropagation networks for disease severity 

classification (low, medium, high). Abboju et al. 

(2024) reviewed deep learning techniques for COVID-

19 severity detection and classification in response to 

high mortality rates. 

Yao et al. (2020) developed an SVM-based machine 

learning model initially incorporating 32 features, 

subsequently refined to 28 biomarkers through feature 

selection, achieving improved accuracy for COVID-19 

severity classification. 

Technological Interventions and Applications 

Rao et al. (2023) developed a mobile application 

integrating hospital databases with GPS services to 

display COVID-19 patient counts by geographic 

location, enabling users to receive alerts about high-

risk zones. Tumuluru et al. (2020) designed an 

intelligent protective mask incorporating air filtration 

systems and object detection capabilities, purifying 

contaminated air and alerting users to infected surfaces. 

Dey and Sangaraju (2024) addressed data storage 

and load balancing challenges using swarm intelligence 

algorithms for global and local load distribution, 

ensuring optimal resource allocation and data center 

performance during demand fluctuations. Dey and 

Sangaraju (2023) proposed a hybrid load balancing 

approach optimizing performance, minimizing latency, 

and enhancing scalability for healthcare data 

management systems. 

Table 4 summarizes the significant studies 

reviewed, presenting their methodological approaches, 

focused research areas, and principal findings. 

Table 4. Significant studies over COVID impact, and detection 

Study (Year) Key Focus Methods Used Key Findings AI/ML Relevance 

Anaya et al., 2021 
Multi-organ damage 

analysis 
Therapies and clinical 

20% suffered from 

long-term organ 

damage. 

AI-based organ 

monitoring with 

wearables. 

Augustin et al., 2021 

Effect on anosmia, 

fatigue due to long-

term COVID 

Multi-variant logistic 

regression, and 

univariate. 

Respiratory/fatigue 

and anosmia Issues 

Hybrid AI (LSTM + 

CNN) for prediction 

Bhatnagar et al., 2024 

Symptoms such as 

cough, anxiety, joint 

pain, breath shortage. 

Systematic review 

Headache, limb 

weakness, 

forgetfulness) 

Decision trees & 

feature selection for 

symptom 

classification 

Dumakude & 

Ezugwu, 2023 

COVID risk 

prediction using a 

Hybrid AI model  

CNN, Feed forward 

NN, XGBoost 

Accuracy, recall, F1-

score, specificity 

Hybrid models 

outperform single 

models. 

Hussein et al., 2024 

Deep learning for 

cost/time-efficient 

COVID detection 

Custom-CNN (with 

dropout & batch 

normalization) 

Prevented overfitting, 

achieved high 

accuracy 

AI-driven diagnostics 

from CT scans, and 

wearables. 

Materials and Methods 

Corona affected patients, although they have 

recovered, would impact on their body organs, which 

determines the risk of corona. The risks would be 

classified as Low or High. In this, Fig.1 demonstrates 

the modules involved in the COVID analysis, such as 

datasets, data preprocessing, a hybrid model for risk 

prediction based on significant parameters, body 

organs affected, Recommendation practices, and 

evaluation of accuracy. The pseudo-procedure for 

determining whether the risk is high or low is used in 

the CNN and LSTM framework. Fig.2 demonstrates the 

flow of activities involved in determining the severity 

of the corona over the patient's life. In this, significant 

activities considered are data preprocessing, hybrid 

model building, and model training. The other 

activities, such as data sources, body organs affected, 

and recommendation best practices, are demonstrated 

in the Introduction chapter. 
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Fig. 1. Modules of Post-COVID Risk Prediction 

PS1: Pseudo_Procedure Post_COVID_risk_prediction(Database[][]): 

Input:Database[][] 

Output: Accuracy 

Step 1: Load the patient database that consists of rows and attributes 

Step 2: Apply data preprocessing 

          2.1 For numerical, handle missing with means, and for categorical, handle missing with mode. 

          2.2 Apply normalization to bring into standard values. 

          2.3 One hot encoding technique is applied to categorical features. 

          2.4 The decomposition of data into 80% and 20% based on groups training, and testing. 

Step 3: Feature selection 

          3.1 Significant features are identified, such as comorbidities like hypertension and diabetes, D-dimer, CRP, lymphocyte count, 

acute symptoms like fatigue, and breathing status. 

          3.2 Use SHAP for significant attributes with the assignment of weights in the evaluation of the risk. 

Step 4: Build LSTM+CNN model 

           4.1 for temporal data, call LSTM in which no.of temporal features, and timesteps 

           4.2 For spatial data, call CNN 

           4.3 Concatenate outputs of LSTM and CNN. 

           4.4 Include fully connected layers for final prediction 

           4.5 For binary classification, use the sigmoid function. 

Step 5: Train the model  

           5.1 Adam as optimizer, then binary cross-entropy are used in the execution. 

           5.2 Iterate till convergence is reached 

           5.3 To avoid overfitting, dropout concept as well as regularization L2 are applied. 

Step 6: Evaluate the model using accuracy, precision, recall, and F1-Score 

Accuracy=True Positives+True Negatives/ Total Number of Cases Where  

Precision=True Positives (TP) / (True Positives (TP)+False Positives (FP)) 

Recall (Sensitivity)=True Positives (TP) / (True Positives (TP)+False Negatives (FN)) 

F1 Score=2×(Precision×Recall) / Precision+Recall 

 

From PS1, the order of activities involved are 

loading of databases, data preprocessing to get quality 

data, Call CNN for spatial data, and Call LSTM for 

temporal data including the number of temporal 

features, and timesteps, combine the outputs of CNN 

and LSTM, then consolidate the predictions using fully 

connected layers, then use the sigmoid function for 

binary classification, and follows model effectiveness 

evaluation through accuracy, and precision. 

From PS2, convert spatial into 4D, and temporal 

into 3D, and use CNN in case of spatial and LSTM in 

case of temporal. Outputs of both CNN and LSTM are 

combined, and then a fully connected layer is added to 

the existing system. Then, the model is trained for some 

epochs and avoids overfitting using standardization. 
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PS2: Pseudo_Procedure CNN+LSTM(Database[][]): 

Input: Database[][] 

Output: High or Low 

Step 1: Load temporal and spatial data 

1.1 Convert temporal data into 3D array that consists of no. of temporal features, timesteps, and patients 

1.2 Concert spatial data into 4D array that consists of patients, image_width, image_height, and channels. 

Step 2: Construct CNN for spatial data 

           2.1 Accept input layer consists of image_width, image_height, and channels. 

           2.2 Add Conv2D(), MaxPooling2D() layers 

           2.3 Flatten the output of CNN to integrate with LSTM 

Step 3: Construct LSTM for temporal data 

          3.1 Accept input layer consists of no. of temporal features, and timesteps 

          3.2 Add LSTM() layer 

Step 4: Concatenate the outputs of LSTM and CNN 

         4.1 Add fully connected layers 

         4.2 Call Sigmoid function for output the risk as High or Low 

Step 5: Train the model  

           5.1 Adam as optimizer, then binary cross-entropy are used in the execution. 

           5.2 Iterate till convergence is reached 

           5.3 To avoid overfitting, the dropout concept as well as the regularization L2 are applied. 

Step 6: Evaluate the model using accuracy, precision, recall, and F1-Score separately for CNN, and LSTM 

 

 

Fig. 2. Order of activities in post-COVID impact risk prediction 
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Table 5. Demonstration of measures over the considered models against our hybrid model 

Model Description Accuracy Performance Metrics  

Logistic Regression 
Binary classification based on a statistical 

model. 
85% Precision: 80%, Recall: 78%, F1: 79% 

Random Forest 
For classification and regression, an 

ensemble of decision trees. 
90% Precision: 88%, Recall: 87%, F1: 87% 

XGBoost 
For high performance, the gradient 

boosting technique. 
93% Precision: 90%, Recall: 91%, F1: 90% 

Support Vector Machine (SVM) 
For classification and regression using 

hyperplanes, use this model. 
88% Precision: 85%, Recall: 84%, F1: 84% 

k-Nearest Neighbors (k-NN) 
For classification, a simple, non-parametric 

model is preferred. 
82% Precision: 80%, Recall: 79%, F1: 79% 

Neural Networks (NN) 
For complex pattern recognition, a deep 

learning model is preferred. 
92% Precision: 89%, Recall: 90%, F1: 89% 

Networks with Convolutions: 

CNN 

It’s a deep learning model used for 

analyzing images. 
95% Precision: 93%, Recall: 92%, F1: 92% 

Short-Term Memory with long 

dependencies: LSTM 

It’s a network preferred for time-series 

sequential data processing. 
94% Precision: 91%, Recall: 90%, F1: 90% 

Gradient Boosting Machines 

(GBM) 

For classification and regression, an 

ensemble technique is preferred. 
92% Precision: 90%, Recall: 89%, F1: 89% 

Decision Trees 
For classification and regression, a simple 

tree-based model was used. 
85% Precision: 82%, Recall: 81%, F1: 81% 

Naive Bayes 
Based on Bayes' theorem, a probabilistic 

model is preferred. 
80% Precision: 75%, Recall: 74%, F1: 74% 

Hybrid Models (e.g., CNN + 

LSTM) 

For improved performance, combine a few 

models. 
98% Precision: 94%, Recall: 93%, F1: 93% 

 

Fig. 3. Accuracies dictate the effectiveness of the methods
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Table 6. Technology solutions impact on COVID 

Technology-Driven Solution Improvement 

AI-Based Monitoring Using Wearable 

Sensors 
30% 

Digital and Telemedicine 25% 

Smart Wearable Devices 20% 

Personalized Nutrition and Diet 

Management 
15% 

AI-Based Mental Support Systems 20% 

Smart Rehabilitation and Physical 

Therapy 
25% 

Blockchain AI Health Records 10% 

 

Fig. 4. Technology-driven solutions for Long COVID 

From Fig.2, the order of activities performed are 

data preprocessing, feature selection, CNN to be called 

for spatial data, LSTM is called for temporal data, a 

hybrid model is called for combined features, 

hyperparameter tuning by SHAP model as well as able 

to interpret, and training the model using binary 

classification for output such as High or Low damage. 

Results 

In this, various ML and DL methods are considered 

for comparison against our proposed model, such as 

post-COVID impact and recommendation practices, as 

well as the prediction of risk during the COVID-19 

pandemic. Table 5 demonstrates the accuracies of the 

considered models, in which our proposed model 

outperforms in the accuracy. 

 

 

 

Table 7. Affected body organs due to post-COVID 

Organ/System Affected Estimated Damage 

Respiratory System 80 

Cardiovascular System 30 

Kidneys 10 

Musculoskeletal System 40 

Gastrointestinal System 20 

Neurological System 20 

Hair and Skin 10 

Endocrine System 10 

Mental Health 20 

 

Fig. 5. Body organ damage demonstration 

In Fig. 4, and Fig. 5, solutions that are to follow for 

quick recovery from the COVID virus and post-COVID 

analysis on the damage of body organs that influence 

patient health. From Fig.4, AI-based monitoring helps 

to provide instant details of health and hence would 

follow prescription personally by the expert. From 

Fig.5, the organs that are most affected are respiratory, 

cardiovascular, and musculoskeletal, which degrade 

the health of patients even after they are cured of 

COVID-19. 

Table 8 demonstrates the features, including the lab 

tests, that are extracted from the clinical scenario, and 

the outputs are High when comorbidities have High 

values. Table 9 demonstrates the clinical values as high 

as well as high vital patterns extracted from imaging 

modality. 
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Table 8. With lab tests scenario 

Age Diabetes Hypertension Vaccination Status D-Dimer CRP Lymphocyte Count Risk Level 

65 Yes Yes Fully Vaccinated 0.8 10.5 1.2 High 

45 No No Partially Vaccinated 0.3 5.0 2.0 Low 

70 Yes Yes Unvaccinated 1.5 20.0 0.8 High 

Table 9. With lab tests, and imaging scenario 

Patient 

ID 
Age Diabetes Hypertension 

Vaccination 

Status 

D-

Dimer 
CRP 

Lymphocyte 

Count 

Chest X-Ray 

(Image) 

Vitals Over 

Time (Temporal 

Data) 

Risk 

Level 

1 65 Yes Yes 
Fully 

Vaccinated 
0.8 10.5 1.2 Image1 

[[98, 120/80, 

95], ...] 
High 

2 45 No No 
Partially 

Vaccinated 
0.3 5.0 2.0 Image2 

[[99, 110/70, 

98], ...] 
Low 

3 70 Yes Yes Unvaccinated 1.5 20.0 0.8 Image3 
[[96, 130/90, 

92], ...] 
High 

Table 10. Accuracies demonstration of considered tools in CORONA risk prediction 

Tool Description Accuracy Key Features 

XGBoost For speed and performance, a gradient boosting 

library is designed. 

93 Ensures high accuracy for clinical 

and lab data. 

IBM Watson Health Healthcare analytics AI-powered platform. 90 Lab results, HER, and imaging for 

risk prediction. 

Microsoft Azure 

Machine Learning 

For building and deploying models, a Cloud-

based ML platform is designed. 

92 Hybrid models with scalability. 

Google Cloud AI AI and ML services based on the Cloud. 93 Large-scale data processing and 

model deployment. 

RapidMiner For ML and predictive analytics, a data science 

platform is designed. 

88 For building ML workflows, it's a 

user-friendly interface. 

H2O.ai An open-source AI platform for ML. 90 Supports AutoML for automated 

model selection and tuning. 

Weka ML toolkit for data mining and predictive 

modeling based on java. 

85 For building and evaluating ML 

models, a UI based. 

KNIME Data analytics platform with open source. 88 Visual programming for ML 

workflows. 

IBM SPSS Modeler Predictive analytics and data mining tool. 85 For building predictive models, the 

UI model is based. 

Amazon SageMaker ML service by AWS cloud 93 From data preparation to 

deployment, end-to-end ML-based. 

Orange Data visualization and ML tool with open-

source. 

85 For ML, it provides a visual 

programming interface. 

IBM Cognos Analytics With predictive analytics capabilities, a business 

intelligence tool  

85 For risk prediction and reporting, it 

integrates with ML models. 

Risk prediction using 

CNN and LSTM 

Predicts the risk based on abnormal values 

possessed by significant factors. 

98 SHAP, combining the outputs of 

CNN and LSTM. 
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Fig. 6. Accuracies of the tools considered against our proposed model  

From Table 10, specific market available tools are 

demonstrated with accuracies, along with their 

significant features. These tools against the hybrid 

model (CNN+LSTM) are compared and determined the 

accuracies. The accuracy of the proposed approach is 

best when compared against the other considered tools 

towards risk assessment. 

Conclusion 

The coronavirus has resulted in many people dying 

due to its unpredictable behavior, particularly its nature 

changes to severe in a few days. This behavior would 

cause many people who are not health conscious, not 

involved in rehabilitation, not consuming nutritious 

food, and older age. In this, the risk of coronavirus is 

severe or normal to be determined using a hybrid model 

that consists of CNN and LSTM, in which the former 

for spatial, and the latter is for temporal. The impact of 

post-COVID may affect any of the body's organs, such 

as the respiratory system, heart problems, muscle 

weakening, etc. The recommended practices to follow 

would help to recover from infection and return to a 

healthy normal or an improvement in health than the 

earlier stage. The significant recommendations 

proposed are AI-based monitoring, Effective 

rehabilitation and physical therapy, Digital and 

telemedicine, and AI mentor support, as well as real-

time monitoring using wearable devices. In this, two 

aspects in which one is on organ damage and 

technology solutions to overcome from, and the second 

is severity classification using a hybrid model of CNN 

and LSTM. 
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